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A B S T R A C T   

As the cost of genome sequencing of foodborne pathogens decreases, it has become possible to sequence a large 
number of isolates and evaluate those using machine learning algorithms. This study aimed to utilize machine 
learning algorithms to predict the disease endpoints in untagged Salmonella genome sequences isolated from 
ground chicken. Our models recognized genetic patterns in the test dataset based on our training dataset ob-
tained from an extensive literature review, using a semi-supervised approach. Using known genotypes as input 
features, the semi-supervised random forest model showed the highest overall accuracy of 0.94 (95% confidence 
interval: 0.85–0.99), and a Kappa value of 0.82, and predicted 87% of the disease endpoints. The model pre-
dicted genes associated with specific disease endpoints that were associated with virulence, which could be used 
as features in predictive modeling endeavors in the future. Our machine learning approach would be useful in 
different areas of food safety, including identifying pathogen sources, predicting antibiotic resistance, and risk 
assessment of foodborne pathogens.   

1. Introduction 

Salmonella enterica subsp. enterica is a ubiquitous, gram-negative, 
facultative anaerobic bacterium with demonstrated human health im-
plications. According to the United States Centers for Disease Control 
and Prevention (U.S. CDC), Salmonella enterica is responsible for an 
estimated more than one million foodborne illnesses in the U.S. every 
year (CDC, 2021). Foodborne salmonellosis, which is linked to the 
consumption of contaminated foods ranging from meat animals and 
poultry to produce and nuts (Zhao et al., 2001; Horby et al., 2003; 
Naugle et al., 2006; Braden, 2006; Danyluk et al., 2007; Scallan et al., 
2011; Angelo et al., 2015; Huang et al., 2016), is one of the most com-
mon causes of salmonellosis worldwide (CDC, 2021). Due to genetic 
evolution and the need for adaptation to a diverse range of hosts from 
warm-blooded mammals to vegetables and fruits, Salmonella enterica has 
high intra-species diversity (Amavisit et al., 2003; Monack, 2012). Sal-
monella enterica subsp. enterica alone has over 2500 named serovars, 

many with markedly different host specificities and virulence capacities, 
and many of its subspecies and serovars making the jump across hosts to 
be able to infect humans (Uzzau et al., 2000). Researchers have observed 
significant inter-and intra-serovar heterogeneity in Salmonella-related 
disease endpoints, such as gastroenteritis, systemic infection, bacter-
emia, and enteric fever (Majowicz et al., 2010; Mohammed & Cormican, 
2016; Cao et al., 2020; Calero-Cáceres et al., 2020). Therefore, the risk 
associated with the presence of Salmonella in foods can be arguably 
defined as being higher. This understates the importance of under-
standing and incorporating the variation in virulence among different 
serovars of Salmonella when assessing the risk of salmonellosis. 

In the last few years, whole genome sequencing (WGS) has seen 
significant popularity in the food safety domain. Sequences from path-
ogenic microorganisms isolated as part of routine surveillance and 
outbreak investigations have been made publicly available. However, 
their use in functions other than epidemiological surveillance has been 
restricted by a distinct lack of associated metadata (Köser et al., 2012; 
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Rantsiou et al., 2018), and heterogeneity in the data collection and 
processing strategies by the primary investigators. While WGS provides 
a wealth of information surrounding pathogen virulence, biologists are 
still trying to identify the linkage between genotypic and phenotypic 
traits using classical statistics. Therefore, accurate characterization of 
strains’ phenotypes is fundamental for quantitative microbial risk 
assessment (QMRA), and published research articles have shown 
possible links between the phenotypic behavior of a number of food-
borne pathogens and their genotypic traits (den Besten et al., 2018; 
Njage, Henri, et al., 2019; Njage, Leekitcharoenphon, & Hald, 2019; 
Chen et al., 2020). In Salmonella, particularly, concrete associations 
have been identified between genotypic features, such as the Salmonella 
Pathogenicity Islands (SPI)-1 and SPI-2, and disease phenotypes (Zou 
et al., 2011; Suez et al., 2013; Chen et al., 2020). 

Machine learning (ML) has gained popularity in the era of big data in 
the scientific community (Libbrecht & Noble, 2015; Ching et al., 2018). 
Whereas mechanistic modeling mainly relies on simplified mathemat-
ical formulations to solve issues regarding complex datasets (Baker 
et al., 2018), ML algorithms extract meaningful features and make 
predictions based on “learned” patterns in such datasets (Libbrecht & 
Noble, 2015; Alkema et al., 2016). ML can either be performed in a 
supervised fashion by classifying, predicting, and interpreting data or 
via an unsupervised means by unraveling and detecting unique patterns 
within a given dataset (Tebani et al., 2016). ML is typically applied in 
situations where large datasets are available and can be related to 
known outputs of interest (Libbrecht & Noble, 2015). ML algorithms 
such as random forest (RF), logistic regression, support vector machine 
(SVM), gradient boosting (GBM), and AdaBoost, have, in fact, seen 
increasing usage in the biological and microbiological domain (Lib-
brecht & Noble, 2015; Jordan & Mitchell, 2015; Safae et al., 2018; 
Wheeler et al., 2018). ML offers an opportunity to overcome challenges 
associated with linking genotypic information to phenotypic traits that 
are too complex to model mathematically (Tebani et al., 2016; Baker 
et al., 2018; Njage, Henri, et al., 2019; Njage, Leekitcharoenphon, et al., 
2019). This is particularly the case for phenotyping of foodborne path-
ogens, where it is difficult to efficiently predict possible phenotypic 
outcomes from pathogen genetic information using classical mathe-
matical models only, due to a number of challenges, including how to 
handle heterogeneous data, inherent imbalance in classes due to het-
erogeneity in sampling and testing motivations, and reliance on arbi-
trary p-values (Libbrecht & Noble, 2015). Therefore, using these 
predictive tools with readily available genomes deposited in public da-
tabases offers novel opportunities for developing ways to predict specific 
outcomes. 

In the current study, we have utilized a ML approach to investigate 
the relatedness of isolates from ground chicken and disease phenotypic 
outcomes using Salmonella whole genome sequences. The overall 
approach and outcome of the study would be useful in food safety and 
predictive modeling, which further opens avenues to potentially inte-
grate genomic data into risk assessment frameworks and source attri-
bution studies. 

2. Materials and methods 

2.1. Data collection 

2.1.1. Labeled dataset 
Salmonella isolates previously identified from human cases of 

bacteremia, gastroenteritis, and systemic infection were identified from 
literature (Calero-Cáceres et al., 2020; Cao et al., 2020; Mohammed & 
Cormican, 2016; Octavia et al., 2019). The curated Salmonella isolates 
were associated with a human endpoint of bacteremia (n = 12), 
gastroenteritis (n = 9), and systemic infection (n = 7). These pre-labeled 
isolates with known clinical endpoints (Supplementary Table S1) are 
important in identifying genotypic patterns associated with each clinical 
endpoint, in order to extrapolate patterns onto sequences with untagged 

data. Isolates were included based on the availability of a specific clin-
ical endpoint, as well as published genome sequences. The general lack 
of availability of the associated disease phenotypes and the stringent 
search criteria employed were responsible for the low number of tagged 
isolates included in our study. 

2.1.2. Unlabeled dataset 
In the U.S. Food and Drug Administration’s (U.S. FDA) GenomeTrakr 

network, a total of 134,733 Salmonella isolates were sequenced (as of 
January 2020), 205 of which were from ground chicken. Samples taken 
from ground chicken were employed in this study because ground 
chicken is likely to have higher microbiological loads than whole car-
casses and parts (Chen et al., 2014). The sequences were opportunisti-
cally selected from among those reported by the GenomeTrakr project 
with previously reported cases of Salmonella infection and were 
comprised of different serovars (CDC, 2016). Therefore, the unlabeled 
dataset was comprised of this unlabeled Salmonella WGS data (N = 205; 
Supplementary Table S2) obtained from the National Center for 
Biotechnology Information’s (NCBI) Pathogen Detection database. 
Additionally, available and important metadata was also collected in 
order to perform a preliminary phylogenetic analysis. PhyloPhlAn 
pipeline was used to generate a phylogenetic tree on labeled and unla-
beled Salmonella strains as described in a previous study (Segata et al., 
2013). 

2.2. Bioinformatics analysis 

The raw reads from the test and training datasets were de novo 
assembled using the Pathosystems Resource Integration Center (PAT-
RIC) webserver employing different strategies (Davis et al., 2020). Short 
reads were assembled using BayesHammer (Nikolenko et al., 2013). 
Subsequently, the genomes were assembled using the in-built Velvet 
(Zerbino & Birney, 2008), IDBA (Peng et al., 2010), and SPAdes 
(Bankevich et al., 2012) algorithms on PATRIC, and each assembled 
genome was assigned an assembly score by ARAST (Davis et al., 2020). 
All algorithms were run on default parameters, and assembly quality 
was determined by analyzing the QUAST score. The SPAdes assembly 
algorithm in PATRIC consistently received a higher ARAST ranking 
compared to the others and was therefore used to assemble the se-
quences. De novo assembled sequences with the highest scores were then 
subjected to downstream analysis. Genome annotation was performed 
using the in-built Rapid Annotation and Subsystems Technology toolkit 
(RASTtk) (Aziz et al., 2008) in the PATRIC web server. Target genes, 
specifically those coding for Salmonella virulence, were identified from 
an extensive literature survey. Briefly, the presence/absence of these 
target genes was determined from all labeled and unlabeled annotated 
genomes, together with their corresponding identity percentages. These 
were then extracted and tabulated into a matrix. Genes used as the 
input/predictor dataset in this study are shown in Supplementary 
Table S3. 

2.3. Machine learning-based prediction of disease phenotypes 

2.3.1. Overview of the approach to model building/selection and disease 
prediction using the selected model 

Ensemble machine learning algorithms were employed to attempt 
class prediction based on target gene presence in this study. Model 
building and the prediction were performed by randomly splitting (70/ 
30) the data into training and test subsets based on the labeled dataset. 
Models were fitted to the training dataset using the RF, logit boost (LB), 
GBM, and SVM with radial and linear kernel (SVMR and SVML, 
respectively) ML algorithms. The best-fitting models were determined 
by 10-fold cross-validation and selected based on accuracy metrics. The 
fitted models were then evaluated on the test data set and the best- 
performing model was used in predicting unknown endpoints of iso-
lates (disease phenotypes). Simply put, several base classifier models 
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were trained on labeled data to predict three disease endpoints/phe-
notypes – gastroenteritis, bacteremia, or systemic infection. The trained 
classifiers were then employed to assign probabilistic class labels to 
unlabeled genetic data. We propose this modeling approach as a solution 
to utilizing the host of available unlabeled WGS data in improving 
predictive models to characterize the hazard through disease endpoint 
prediction in Salmonella from food sources. Here, we have utilized a 
number of base classifiers, including RF, GBM, and SVM to identify the 
best-fit classifier. The classifiers tested in our study were selected due to 
their prior usage in biological sequence classification and disease 
endpoint prediction (Kotsiantis, 2007; Libbrecht & Noble, 2015; Lupo-
lova et al., 2016; Wheeler et al., 2018). Model building and prediction 
were performed using the caret package in R (v. 4.0.3, R Core Team, 
2019; Vienna, Austria). A simplified workflow illustrating the approach 
employed in this study is presented in Fig. 1 and further explained below 
this section. 

2.3.2. Data exploration and splitting 
An exploration of the data revealed a class imbalance between 

clinical phenotypic outcomes. According to Velez et al. (2007), if 
imbalanced classes are to be used, then the model will most probably 
learn from predictors associated with the larger classes (classes with a 
greater number of samples) (Velez et al., 2007). To overcome this, a post 
hoc sampling technique previously proposed by Kuhn and Johnson 
(2013) was adapted, using the caret package in R to up-sample classes 
with a low number of samples (Kuhn & Johnson, 2013). Improved ac-
curacy was obtained by up-sampling, which is a method to re-balance 
unbalanced datasets, or datasets where a particular class is 
over-represented (or where one or more classes are under-represented), 
which can introduce bias into the models. In this method, samples are 
taken with replacement from the classes such that classes with minority 
samples are equal to those of the majority class. This was performed 
until each class (bacteremia, gastroenteritis, and systemic infection) had 
nearly the same number of samples. 

2.3.3. Algorithm selection and evaluation 
Model training was performed on Salmonella isolates with known 

clinical endpoint (training). Initial model training was performed using 
a number of ML classification algorithms. Models were subjected to 10- 
fold cross-validation for hyperparameter tuning and selection of the 
best-performing model as previously described (Njage, Henri, et al., 
2019,Njage, Leekitcharoenphon, et al., 2019). Average accuracy for the 
ten-fold cross-validations was obtained by comparing both the 
up-sampled and original datasets (Kuhn & Johnson, 2013; Njage, Henri, 
et al., 2019; Njage, Leekitcharoenphon, et al., 2019). A confusion matrix 
is a method to evaluate the model, by determining the balanced accu-
racy of each model. A confusion matrix is generally used to evaluate the 
performance of a classification model on a given test dataset for which 
the true (positive or negative) values are known. The accuracy scores, 
sensitivity, and specificity of each model in predicting the disease 
phenotype were determined. The accuracy score calculated from the 
confusion matrix describes the association between the predicted and 
actual classes. 

Furthermore, the Kappa value was used to evaluate the agreement 
between class distributions. Usually, Kappa values range between − 1 
and 1: − 1 indicates no agreement whereas 1 suggests a perfect agree-
ment between the predicted and observed classes. Algorithms with 
Kappa value < 0.40, 0.40–0.70, and >0.75 were categorized as poor, fair 
to good, and excellent, respectively, as described previously (Fleiss 
et al., 2003). The prediction accuracy of phenotypic outcomes was 
evaluated using the sensitivity and specificity value (Altman & Bland, 
1994). 

2.3.4. Disease phenotype prediction 
The best performing model was used to predict possible disease 

phenotypes in the unlabeled dataset (i.e., labeling). The chosen model 
would learn specific genetic patterns from the labeled dataset and pre-
dict possible phenotypic outcomes in the unlabeled dataset. The trained 
model was employed to assign probabilistic classes/labels to the unla-
beled dataset (Salmonella isolates from ground chicken without endpoint 
data). The trained ML model classifies the untagged isolates based on the 
posterior probability (πij) that isolate i belongs to the jth disease 
endpoint. Posterior classification of each isolate with unlabeled disease 
endpoints was then performed by calculating their individual posterior 

Fig. 1. Overview of prediction strategy. Semi-supervised machine learning-based predictive modeling, Salmonella isolates with known phenotypes were used for 
initial model training. Salmonella isolated from ground chicken were used for subsequent outcome prediction and model re-training and testing. 
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probabilities (πij) which express how likely the ith isolate is to belong to 
disease endpoint j, considering the observed set of genes for that isolate. 
The classification rule used was: Classify isolate i into disease endpoint j 
if and only if πij = maxk (πij) which means to classify into the disease 
endpoint to which untagged isolate i is most likely to belong. 

2.4. Variable importance 

Genes encoding for virulence determinants responsible for bacter-
emia, gastroenteritis, and systemic infection, as well as redundant var-
iable features that may most contribute to predictive model accuracy, 
were identified. The best-performing model was used to select features 
with variable importance for different outcomes and integrate the as-
sociation between selected predictors. Therefore, important features 
were selected using the logit boost and random forest models and 
compared to those selected using the Boruta algorithm which is a model- 
independent wrapper algorithm (Kursa, 2014). These approaches 
assisted in the identification of important genes that are either strongly 
or weakly related to the disease outcomes. 

3. Results 

3.1. Identification of target genes for initial matrix development 

Assembled and annotated Salmonella sequences from ground chicken 
for the labeled and unlabeled datasets had an average genome size of 
4.8 Mb (Supplementary Tables S1 and S2). The predicted genes were 
searched against the protein family database, Pfam 5.5 (Uni Prot Con-
sortium 2018). The COG database was used to find putative orthologs in 
other completed genomes (Tatusov et al., 2001). Target genes for all 
Salmonella isolates in the PATRIC database were analyzed and the genes’ 
% identity were obtained and used in downstream analysis. It is worth 
noting that some genes were either present or absent in isolates. 
Phylogenetic analysis of our dataset established that the strains were 
distributed across the major Salmonella serovars, namely Dublin, 
Typhimurium, Infantis, Kentucky, and Enteritidis, associated with dis-
ease outcomes (Supplementary Fig. S1). 

3.2. Predictive modeling 

3.2.1. Model selection 
A supervised approach was employed to develop a model that could 

predict the disease phenotype in unlabeled Salmonella isolates based on 
“training” received from a pre-labeled dataset. In our study, 28 Salmo-
nella isolates with known phenotypes (systemic (7), gastroenteritis (9), 
bacteremia (12)) were employed for model training and testing, and 205 
Salmonella isolates (not associated with any disease phenotype) from 
ground chicken were employed for class label prediction and subse-
quently added to the labeled set for model retesting. The model pre-
dictors were Salmonella target genes (n = 384) associated with virulence 
(Supplementary Table S1). The performance of the five models was 
compared by the average model accuracy obtained from ten iterations. 
The average accuracy and validation accuracy for all 10 iterations are 
shown in Table 1. Random forest and logit boost were the best per-
forming models. Though RF and LB had the highest mean accuracies, 
there was no significant difference (p > 0.05) between their means and 
that of other models (GBM, SVMR, SVML) (Table 1). 

3.2.2. Model evaluation 
Model evaluation was performed by analyzing the overall accuracy 

and confusion matrix statistics generated by the RF algorithm. Prior to 
up-sampling, the model accuracy for RF was 0.94 (95% confidence in-
terval: 0.85–0.99), with a Kappa value of 0.82, both of which indicated a 
good fit. Improved accuracy was obtained by up-sampling the reduced 
phenotypic classes with replacement. Results showed that up-sampling 
improved the model performance significantly (95% confidence 

interval: 0.98–1.00). A Kappa value of 1.00 showed that this model 
performed substantially well, as described by Landis and Koch (1977). 
Sensitivity for bacteremia, gastroenteritis and systemic infection were 
1.0, 1.0, and 0.4, respectively. The balanced accuracies for bacteremia, 
gastroenteritis and systemic infection were 0.86, 1, and 0.7, respec-
tively. The final RF model was used to analyze the combined labeled and 
unlabeled datasets using a 70–30% train-test split and subsequently 
predict genetic patterns indicative of specific outcomes. Ten-fold cross- 
validation was applied to estimate the model performance (Pang et al., 
2018; Njage, Henri, et al., 2019, Njage, Leekitcharoenphon, & Hald, 
2019). Model accuracy was 0.99 (95% confidence interval: 0.98, 0.99), 
obtained after 11 iterations. The Kappa value was 0.99, indicating our 
model performed well according to Landis & Koch, (1977) or excellent 
as proposed by Fleiss et al. (2003). Sensitivity and specificity values 
were between 0.98 and 1. These results were consistent with the results 
of other tested models based on 10-fold cross-validation. 

3.3. Disease phenotype prediction 

The best performing model (RF algorithm) was used to predict dis-
ease phenotype in 87% (178) of our included samples. The main pre-
dicted disease phenotype was bacteremia, comprising 87.64% of the 
included isolates, followed by gastroenteritis (6.74%) and systemic 
infection (5.62%). Furthermore, a plot of the probabilities of each isolate 
i belonging to disease endpoint j indicated that outcome bacteremia was 
the most observed compared to gastroenteritis and systemic infection 
(Fig. 2) as captured by the model. 

3.4. Identification of important virulence gene predictors 

The top twenty predictor variables sorted by maximum importance 
across the classes are shown in Table 2. Results indicated that a number 
of virulence determinants were predicted to be important features for 
gastroenteritis, bacteremia, and systemic infection (Table 2). Genes 
coding for virulence factors involved in invasion, adhesion, ecological 
competition, transcriptional regulators, and antibiotic resistance were 
found to be important predictors of the disease phenotype. Our results 
indicated that genes coding for proteins associated with Salmonella 
inter/intra competition, invasion, environmental sensors, and multidrug 
resistance showed higher probabilities as predictors of both gastroen-
teritis and systemic infections, while those coding for survival, antimi-
crobial resistance, and other hypothetical proteins were associated with 
all disease phenotypes (Table 2). 

4. Discussion 

Recent years have seen a significant increase in the availability of 
genomic data for various foodborne pathogens, primarily due to the 
improvement in sequencing technologies. This has provided researchers 
with an unprecedented opportunity to understand the genotypic and 
phenotypic variations in infectivity, virulence, and disease outcomes 
between different strains of the same bacterial species. However, there is 

Table 1 
Model performance of different machine learning algorithms.  

Model GBM RF SVMR SVML LB 

Average 0.988 ±
0.01a 

0.992 ±
0.09a 

0.977 ±
0.1a 

0.986 ±
0.007a 

0.991 ±
0.01a Accuracy 

Valid 
accuracy 

0.993 0.993 0.974 0.987 1 

GBM = gradient boosting. 
RF = random forest. 
SVMR = support vector machine with radial kernel. 
SVML = support vector machine with linear kernel. 
LB = logit boost. 

a Denotes that there was no significant difference (p > 0.05). 
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a lack of metadata and useful biological information associated with the 
sequenced bacterial strains, which has hindered their widespread use by 
researchers. Based on patterns recognized from human cases with 
defined (tagged) endpoints, researchers are trying to link potential 
phenotypic outcomes to unlabeled sets of genetic data obtained from 
food sources. Here, we have utilized a machine learning strategy to 
predict the outcomes in unlabeled data, and subsequently employ such 
data to identify genomic patterns associated with specific phenotypic 
outcomes (in this case, disease outcome). 

Generating WGS data for important microorganisms has prompted 
widespread interest in ML since genomic data provides rich information 
for ML algorithms to extract essential patterns and build predictive 
models (L’Heureux et al., 2017; Chen et al., 2020). In this study, the best 
performing model (RF) predicted the disease phenotype accurately in 
87% of our included samples. Phenotype bacteremia was predicted more 
often compared to gastroenteritis and systemic infection in part because 
of the class imbalance in the dataset used in this study. While studies 
indicate that non-typhoidal Salmonella (NTS) serovars could have broad 
host ranges or elicit specific disease symptoms in different hosts 
(McClelland et al., 2001; Jajere, 2019), gastroenteritis accounts for a 
majority of the NTS-related illnesses (Majowicz et al., 2010). 

Genomic comparisons among bacterial strains can reveal their 
intrinsic similarities and differences, enabling a better understanding of 
the observed phenotypic traits (Edwards et al., 2002; Amavisit et al., 
2003; Mohammed & Cormican, 2016). The availability of massive 
amounts of molecular data due to the advent and increased usage of 
WGS allows unraveling certain genetic patterns and manifested pheno-
typic traits in microorganisms. However, our incomplete knowledge of 
the complex molecular mechanisms employed by pathogenic microor-
ganisms to cause infections poses a major challenge in translating such 
genotypic data to associated phenotypic traits (Brul et al., 2012; Tebani 
et al., 2016; Haddad et al., 2018). Advanced machine learning offers us 
an unprecedented opportunity to interpret these large and complex 
molecular datasets (Libbrecht & Noble, 2015; Haddad et al., 2018; van 
Heyningen, 2019). Normally, if well trained, ML models can ‘learn’ or 
‘recognize’ important genotypic patterns in a dataset associated with a 
given phenotypic trait (Libbrecht & Noble, 2015; Farrell et al., 2018; 
Wheeler et al., 2018). This study suggests that machine learning in 
support of genomic-based microbial risk assessment can predict Salmo-
nella phenotypic outcomes from a given WGS data. 

The ability to generate genomic data and to build predictive models 
based on such large-scale data has been complex (Jordan & Mitchell, 
2015; L’Heureux et al., 2017; Zhou et al., 2017). In the current study, we 
utilized machine learning to extrapolate patterns onto genomic data that 
had no associated disease outcomes and predicted the possible out-
comes. It is important to note that predicting disease outcomes based on 
complex molecular data has been difficult due to the lack of consistent 
and usable metadata. Therefore, our findings demonstrate that it may be 
possible to use ML for predictive modeling by utilizing untapped 
genomic data. 

In this study, the average accuracies of different ML algorithms were 
compared, and the best-performing algorithm was used to train, test, 
and analyze our untagged dataset. The use of various ML algorithms in 
predicting biological endpoints or disease phenotypic outcomes has 
been fast gaining momentum (Libbrecht & Noble, 2015; Zhou et al., 
2017; Njage, Henri, et al., 2019; Njage, Leekitcharoenphon, et al., 
2019). Particularly, these models have been employed in making sense 
of genetic data from a wide range of sources (Kuhn, 2008; Machado 
et al., 2015). Here, we chose to test these models to classify Salmonella 
into one of three disease phenotypes or endpoints based on its genetic 
composition. Our results showed that RF had the highest average ac-
curacy, followed by LB, although the difference was not statistically 
significant (p > 0.05). The sensitivity, specificity, and balanced accuracy 
of disease phenotypic outcome prediction by the final RF model ranged 
between 0.4 and 1, which was comparable to performances of ML 
techniques in the prediction of microbial infection outcomes based on 
WGS as reported previously (Njage, Henri, et al., 2019, Njage, 

Fig. 2. Distribution of individual disease phenotype among isolates. A higher number of Salmonella isolates were highly predictive of the bacteremia (blue) disease 
phenotype, compared to gastroenteritis (orange) and systemic infection (gray), based on target gene expression. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the Web version of this article.) 

Table 2 
Top twenty most important variables/genes identified by the random forest 
model, sorted by maximum importance across the classes.  

Gene Name Protein Name 

invJ Antigen presentation protein SpaN 
hilE Negative regulator that acts upon HilD 
sopE Guanine nucleotide exchange factor SopE 
dgcJ (YeaJ) Diguanylate cyclase 
arcR Potential AcrAB operon repressor 
yigG Hypothetical protein 
elaD Putative cytoplasmic protein 
sseJ Secreted effector protein 
mgrB PhoP/PhoQ regulator MgrB 
murA UDP-N-acetylglucosamine 1-carboxyvinyltransferase 
ramR Negative regulator the MarAB 
bacA Bacitracin resistance 
sigD/sopB Effector protein (inositol phosphate phosphatase) 
ramA Transcriptional activator RamA 
cpxA Two-component system sensor histidine kinase CpxA 
mdtB Multidrug transporter subunit MdtB 
cysB Transcriptional regulator 
mdsA Putative cation efflux pump 
mdtG Multidrug transporter subunit MdtG 
gyrA DNA gyrase subunit A 

Note: The numbers denote importance based on accuracies of the prediction of 
the disease phenotypes by each feature (target gene). 
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Leekitcharoenphon, et al., 2019). The prediction of phenotypic out-
comes is often a major objective of studies with molecular data, as seen 
in a previous study predicting cancer subtypes using genomic markers 
(Wu et al., 2003). RF is a popular tree-based ensemble ML tool because it 
is highly data-adaptive, applicable to “large p (predictor variables), 
small n (observations)” problems, able to account for correlation as well 
as interactions among features (Breiman, 2001; Lin & Jeon, 2006). 
Therefore, it is a suitable tool used to predict phenotypic outcomes using 
genomic data. In our study, RF was reasonably accurate in classifications 
based on virulence (target) genes influencing disease phenotype in Sal-
monella serovars. 

Genomic comparisons between de novo assembled sequences of the 
205 Salmonella isolates isolated from ground chicken revealed some 
genetic similarities and differences. As expected, more than 90% of the 
Salmonella genes are part of the core genome and other genes are ac-
quired through horizontal gene transfer, which might be for better 
adaptability and diversity among the serovars (McClelland et al., 2001; 
Parkhill et al., 2001; Amavisit et al., 2003; Fu et al., 2015; Gupta et al., 
2019; Chen et al., 2020). Even though Salmonella serovars are closely 
related genetically, there are slight gene variations between them 
(Amavisit et al., 2003). Significant genetic changes are usually observed 
in the “variable” genome, with minor single nucleotide polymorphisms 
also causing differences in overall Salmonella pathogenicity and survival 
(Chen et al., 2020). Many Salmonella serovars cause specific disease 
symptoms in different hosts or have different host ranges (McClelland 
et al., 2001; Jajere, 2019). S. Typhimurium and S. Enteritidis, for 
instance, have a wide host range and infect mice, humans, and chicken, 
causing either bacteremia, systemic infection, or gastroenteritis (Majo-
wicz et al., 2010; Mohammed & Cormican, 2016; Cao et al., 2020; 
Calero-Cáceres et al., 2020). S. Typhi on the other hand is host-specific 
and only infects humans, causing typhoid (Parkhill et al., 2001). Sal-
monella enterica is an extremely diverse species, comprising more than 
2500 named serovars, designated for their distinctive antigen presen-
tation and pathogenicity profiles. Some Salmonella species are known to 
be virulent pathogens, while not colonizing/infecting humans (Timme 
et al., 2013). A phylogenetic analysis was performed to determine the 
diversity of our isolates. Our results indicated that both model building 
and prediction data sets were distributed across the major Salmonella 
serovars previously associated with human disease outcomes. The ma-
chine learning model predicted unique virulence features that may 
explain the difference in phenotypic traits observed among the Salmo-
nella isolates. These predictors enable a better understanding of the 
pathogens’ molecular complexity and phenotypic outcomes (den Besten 
et al., 2018; Fritsch et al., 2019). In addition to accurate prediction of 
disease phenotypes, ML enables feature selection by identifying sub-sets 
of virulence genes whose expression patterns may significantly correlate 
with different disease phenotypes. 

Mutation of the invJ gene (antigen presentation gene, associated with 
gastroenteritis) rendered S. Typhimurium mutants defective for entry 
into cultured epithelial cells; however, these mutants were not affected 
in their ability to adhere to epithelial cells (Collazo et al., 1995). Simi-
larly, the HilE protein, which was associated with gastroenteritis and 
systemic infection, interacts with the HilD protein to negatively regulate 
the expression of the hilA gene, and also plays a role in the invasive 
phenotype in S. Typhimurium (Baxter et al., 2003; Lou et al., 2019). 
SopE is an effector protein that contributes to intracellular replication, 
promotes bacterial entry, and induces inflammation, and diarrhea 
(Wood et al., 1996; Humphreys et al., 2012). Interestingly, we found 
that sseJ and yeaJ genes predicted systemic disease and gastroenteritis 
endpoints, which corresponded well with the literature. For instance, 
the putative sseJ and yeaJ genes are required by S. Typhimurium to 
initiate infection and, unexpectedly, to persist systemically within the 
host (Lawley et al., 2006). Additionally, the sopB gene is required for 
membrane fission and damage to epithelial barrier function during the 
invasion (Raffatellu et al., 2005; Zhang et al., 2002). In our study, this 
gene predicted both systemic infection and gastroenteritis. Finally, 

murA, mdtB, mdsA, mdtG, and bacA are important genes previously 
identified as conferring antimicrobial resistance to Salmonella (Jebastin 
& Narayanan, 2019; Nishino et al., 2007). 

Salmonella pathogenicity islands (SPIs) encode many genes that are 
responsible for pathogenicity (Jajere, 2019). Our results indicated that 
target genes were distributed across SPI-1-5. SPI-1 genes are primarily 
required for bacterial invasion into epithelial cells of the intestine, while 
SPI-2, 3, and 4 are primarily needed for bacterial growth and survival 
within the host, manifesting in the systemic phase of the disease. The 
SPI-5 virulence genes were recently shown to mediate the inflammation 
and chloride secretion characterizing the enteric phase of the disease 
(Marcus et al., 2000; Sırıken, 2013). Successful invasion and coloniza-
tion of Salmonella in humans can result in a number of clinical outcomes 
ranging from moderate (gastroenteritis) to severe (systemic infection) 
(Edwards et al., 2002; Jajere, 2019; Kadhim, 2020; Mohammed & 
Cormican, 2016). These different clinical outcomes have been previ-
ously associated with the expression of different sets of genes (Jajere, 
2019; Mohammed & Cormican, 2016). Our results indicate a possible 
association between clinical outcomes and target genes, as the predic-
tion algorithm indicated that different sets of target genes were 
responsible for either a specific disease or more than one disease 
outcome in humans, which is in line with the results presented in prior 
studies. Therefore, these findings and models provide a step towards 
linking genotypic traits of any sequenced Salmonella isolates extracted 
from food source to disease phenotypes. Additionally, the identified 
variable importance genes would be helpful as potential features to 
provide more insights into predictive modeling and risk assessment 
studies. 

In this study, we made an initial attempt in utilizing a semi- 
supervised learning approach to predicting clinical outcomes of Salmo-
nella infection using whole genome sequencing data. It is evident from 
prior studies (Wheeler et al., 2018; Njage, Henri, et al., 2019, Njage, 
Leekitcharoenphon, et al., 2019) that ML can be used to predict disease 
outcomes given a large amount of standardized genomic data. Currently, 
predictive model development is hindered by the lack of genomic data 
with standardized data. Whereas in this study, we have utilized a 
semi-supervised ML method to generate reasonable associations be-
tween gene presence/absence and clinical outcome using unlabeled 
data, our results are dependent on the available data. Due to our strin-
gent search criteria for the labeled dataset for initial model develop-
ment, our initial model was built on a small sample set and as such the 
results should be interpreted with caution. Despite this, we consider our 
approach is reasonable, and the associations would be strengthened 
with the availability of standardized phenotype data or metadata in the 
future. 

In conclusion, we utilized a machine learning model for predicting 
outcomes from untagged genomic data extracted from ground chicken. 
Food safety issues have a considerable impact on public health. Machine 
learning techniques can be used to identify patterns and trends 
impacting food safety. Genome sequencing is increasingly being used in 
the field of food safety, specifically in microbial tracking and outbreak 
investigation. Such data, combined with the availability of standardized 
metadata, could be analyzed by ML models to predict antibiotic resis-
tance patterns, pathogen source attribution, foodborne outbreak inves-
tigation, and risk assessment in the future. 
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