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A B S T R A C T   

Several studies have shown a correlation between outbreaks of Salmonella enterica and meteorological trends, 
especially related to temperature and precipitation. Additionally, current studies based on outbreaks are per-
formed on data for the species Salmonella enterica, without considering its intra-species and genetic heteroge-
neity. In this study, we analyzed the effect of differential gene expression and a suite of meteorological factors on 
salmonellosis outbreak scale (typified by case numbers) using a combination of machine learning and count- 
based modeling methods. Elastic Net regularization model was used to identify significant genes from a Sal-
monella pan-genome, and a multi-variable Poisson regression developed to fit the individual and mixed effects 
data. The best-fit Elastic Net model (α = 0.50; λ = 2.18) identified 53 significant gene features. The final multi- 
variable Poisson regression model (χ2 = 5748.22; pseudo R2 = 0.669; probability > χ2 = 0) identified 127 
significant predictor terms (p < 0.10), comprising 45 gene-only predictors, average temperature, average pre-
cipitation, and average snowfall, and 79 gene-meteorological interaction terms. The significant genes ranged in 
functionality from cellular signaling and transport, virulence, metabolism, and stress response, and included gene 
variables not considered as significant by the baseline model. This study presents a holistic approach towards 
evaluating multiple data sources (such as genomic and environmental data) to predict outbreak scale, which 
could help in revising the estimates for human health risk.   

1. Introduction 

Salmonella enterica subsp. enterica, a facultative anaerobic bacteria, is 
a leading cause of foodborne illness worldwide. Several statistics have 
shown that foodborne Salmonella exerts considerable impact on public 
health and mortality rates, affecting an estimated 1 million people, with 
23,128 hospitalizations, and 452 deaths in the U.S. annually (Scallan 
et al., 2011). Despite ongoing efforts to curb the spread and proliferation 
of this bacteria, its ubiquitous nature, considerable within-species di-
versity, and horizontal gene transmission of virulence genes from 
traditionally more pathogenic to less- or non-pathogenic serovars has 
resulted in a significant increase in the number of salmonellosis cases 
being reported both in the U.S. and globally (CDC, 2021; Scallan et al., 
2011). Among the foodborne routes, salmonellosis outbreaks are 
increasingly being attributed to non-meat and -poultry sources, such as 
produce, ready-to-eat foods, oils and grains, and bakery products. 

Factors such as the prevalent environmental conditions and farm prac-
tices, as well as the presence of vectors such as livestock and wildlife, 
untreated manure, level of crop maturity, presence of native biota that 
may promote or inhibit the growth of human pathogens, inadequacies in 
food handling practices, and water quality could contribute to the pro-
liferation of Salmonella pre- and post-harvest, which, in turn, would lead 
to increased human foodborne exposure (Ehuwa et al., 2021). Moreover, 
Salmonella covers a diverse genetic landscape, with Salmonella enterica 
subsp. enterica alone comprising >2500 named serovars. Currently, 
models predicting bacterial infection outcome and outbreak scale do not 
account for intra-species variability in microbial (specifically Salmo-
nella) behavior because, for the most part, variabilities existing at the 
gene-level are too large in scale to be incorporated in basic statistical 
models. Molecular analyses of isolates could provide us with informa-
tion regarding the expression of genes associated with virulence and 
survival in isolates under various conditions of isolation (Adzitey et al., 
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2020). Additionally, the presence/absence of genes (and its frequency) 
associated with stress tolerance, virulence, and antibiotic resistance in 
Salmonella could help in developing a differential virulence profile that 
could aid in re-evaluating the existing infectivity and outbreak predic-
tive estimates for Salmonella enterica. For example, the genes associated 
with biofilm production (adrA, bapA), virulence (hilA, invA, invC, invG, 
prgH), and temperature stress (rpoS, rpoE, and rpoH) have been previ-
ously associated with exposure of different serovars of Salmonella such 
as Enteritidis and Tyhpimurium to stressful temperature and pH con-
ditions (Sirsat et al., 2015; Badie et al., 2021). 

Several studies have investigated the impact of environmental fac-
tors, specifically temperature and precipitation, on the incidence of 
Salmonella-associated foodborne outbreaks (Stephen and Barnett, 2016; 
Shirriff, 2019). The impact of environmental factors on the genetic 
profiles of Salmonella plays a particularly important role in its patho-
genicity; conditions unfavorable to pathogen growth could induce a 
variety of survival mechanisms in the cells, which could impact the 
overall rate of Salmonella infections, modulating outbreak and illness 
risk estimates. Studies have shown how varied combinations of ambient 
temperatures and precipitation levels, and the resultant changes in an-
imal (e.g. Salmonella shedding) and human behavior (e.g. recreational 
activities) and food habitats contributes to salmonellosis infections in 
the population (Mun, 2020; Munnoch et al., 2009; Sidhu et al., 2013). 
This is particularly the case with higher temperatures and Salmonella 
proliferation, and notifications of salmonellosis (McMichael, 2015). In 
general, studies have reported that the risk of Salmonella contamination, 
and subsequently, infection, increases under higher ambient tempera-
tures (particularly at temperatures 30◦C and higher), as it supports the 
growth of Salmonella (Yun et al., 2016). Similarly, increasing precipi-
tation levels are also believed to increase the risk of salmonellosis 
incidence, as runoff can increase pathogen loads in water sources, which 
would get distributed to a wider area and create conditions (high water 
activity) that promote the growth of bacteria (Stephen and Barnett, 
2016). Therefore, it is important to take the impact of these variations 
into account when estimating the overall human risk due to Salmonella. 

Recent studies have shown the applicability of novel approaches to 
re-quantify the risk of disease and outbreaks based on differences in gene 
expression. Chief among them is the application of novel modeling or 
machine learning to predict the severity or endpoint of diseases caused 
by pathogenic agents such as Listeria (Njage et al., 2019a), Escherichia 
coli (Njage et al., 2019b; Pielaat et al., 2015), and Salmonella (Karanth 
et al., 2022; Tanui et al., 2022). An important contribution of this new 
wave in bacterial predictive modeling is the incorporation of feature 
selection algorithms to reduce whole genome sequencing data into a 
format that can be employed in predictive models. This method helps 
with issues such as model overfitting or bias introduction due to p >> n 
(much larger number of predictors compared to number of samples). 

The objective of this study was to develop a machine learning-based 
regression approach to quantify the interaction effects between meteo-
rological factors (such as temperature and precipitation) and genes that 
might be involved in a Salmonella enterica strain’s response to environ-
mental stressors within outbreak situations. This, in turn, would help us 
predict the most significant combination of genes and meteorological 
factors that contribute to the incidence of foodborne outbreaks of 
salmonellosis. 

2. Materials and methods 

2.1. Data collection 

2.1.1. Salmonella outbreak data 
Data regarding foodborne outbreaks of Salmonella was obtained from 

the U.S. Centers for Disease Control and Prevention’s (CDC) National 
Outbreak Reporting System (NORS) database, which receives such data 
from the CDC’s Foodborne Disease Outbreak Surveillance System 
(FDOSS; https://www.cdc.gov/fdoss/annual-reports/index.html). For 

this study, only data from Salmonella outbreaks definitively associated 
with a food source (i.e., foodborne salmonellosis) were included, with 
sporadic cases being excluded completely. The latter was excluded since 
it would be difficult to find correlating Salmonella isolates, leading to an 
incomplete dataset. The NORS toolkit contains a comprehensive list of 
outbreaks attributed to different etiological agents that have occurred 
between 1998 and 2017, and includes metadata such as the month and 
year of the outbreak, food source, and resultant number of illnesses, 
hospitalizations, and deaths. Stringent inclusion criteria, such as the 
availability of serovar data and U.S. state wherein outbreak occurs, and 
complete number of illnesses per outbreak, were applied to identify 
relevant and complete data points. 

2.1.2. Meteorological data 
Meteorological data were obtained from the National Oceanic and 

Atmospheric Administration’s (NOAA) National Centers for Environ-
mental Information (NCEI; previously the National Climactic Data 
Center) database (https://www.ncdc.noaa.gov/cdo-web/). Collected 
data included monthly climatological measures of temperature, pre-
cipitation, and snow-related statistics from the suite of climatological 
statistics collectively referred to as “U.S. Global Summary of the Month,” 
measured at stations operated by the NOAA (Arguez et al., 2012; Durre 
et al., 2013; Heim 1996; Owen and Whitehurst 2002). In this study, data 
was obtained in the form of monthly averages. 

NOAA measures climatological data with the aid of numerous 
weather stations spread across the U.S. Incorporating data from all 
stations within a state of interest would allow us to incorporate varia-
tions in weather conditions seen across the state, specifically those with 
a larger land mass. In this study, the monthly average temperature, 
monthly average precipitation, and monthly average snowfall was ob-
tained from all weather stations within each state of interest from NCEI. 
Average values were taken across all weather stations within each state, 
and the values standardized using the state-specific mean and standard 
deviation for each month and year of interest. In essence, for each 
observation, meteorological data was the average of data obtained from 
all weather stations in the respective state during the month of the 
outbreak. In the NCEI website (Index of/data/global-summary-of-the- 
month/access (noaa.gov)), temperature data is reported in ◦F and pre-
cipitation data is reported in inches. In this study, however, the results 
are reported in ◦C and cm, respectively. 

2.1.3. Salmonella isolates for development of environmental Salmonella 
pan-genome 

Salmonella isolates obtained by U.S. regulatory agencies during 
routine surveillance corresponding to salmonellosis outbreak occur-
rence were sampled from the National Center for Biotechnology In-
formation’s (NCBI) Pathogen Detection database. Inclusion criteria set 
for isolate selection included the availability of metadata: ‘serovar’ and 
‘state’ corresponding to an outbreak, ‘availability of short reads data,’ 
and ‘month and year corresponding to an outbreak’ or ‘month and year 
up to two months before an outbreak.’ The latter criteria was included to 
account for lag time between infection in animals (or contamination of 
food) and actual consumption. Multiple isolates were selected from 
across various sources (corresponding to each outbreak data point) in 
order to incorporate the genetic variations observable within and be-
tween serovars, and in various isolate environments. Based on these 
inclusion criteria, 541 isolates spread across serovars Dublin, Enteritidis, 
Heidelberg, Infantis, Javiana, Montevideo, Munchen, Muenster, New-
port, Reading, Saintpaul, Senftenberg, and Typhimurium were obtained 
to create our pan genome (gene dictionary). 

2.2. WGS pre-processing 

2.2.1. WGS assembly and annotation 
Sequence Read Archive (SRA) Run Accession numbers for all 

included isolates were obtained from the NCBI SRA repository. The 
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isolates were de novo assembled and annotated on the web-based Bac-
terial and Viral Bioinformatics Resource Center (BV-BRC; formerly 
known as PATRIC (v.3.6.3) Bacterial Bioinformatics Resource Center). 
The in-built SPAdes (Bankevich et al., 2012) assembler was used for 
genome assembly and the Rapid Annotation using Subsystems Tech-
nology (RASTk)-enabled genome annotation service (Brettin et al., 
2015) was employed for genome annotation. Although many of the 
included isolates had available WGS in the NCBI Genomes repository, all 
WGS were assembled and annotated on PATRIC for uniformity. Isolates 
(n = 497) that fit the quality parameters of good sequence quality ac-
cording to QUAST statistics (Gurevich et al., 2013), had complete 
sequence information, and returned a sufficient annotation score were 
included in the dataset for pan-genome creation. 

2.2.2. Salmonella pan-genome creation 
In order to obtain important predictor variables for use in our model, 

a “dictionary” of genes and gene homologs was developed from the 
annotated sequences. A dictionary is, in simple terms, a set of features 
that represent the input data, providing some form of parametrization of 
the input space used to represent the prediction function (de Mol et al., 
2009). In the case where input functions are individual, unique genes 
from a number of samples, this dictionary refers to the pan-genome. The 
pan-genome was developed by aligning nucleotide sequences 
all-against-all using pairwise2 in Python as described previously (Kar-
anth et al., 2022). All-against-all basic local alignment search tool 
(BLAST) is an established method to search for homologous pairs of 
sequences in a database. Genes annotated as coding for ‘hypothetical 
proteins,’ ‘hypothetical xyz,’ ‘putative xyz,’ CRISPR repeats, and CRISPR 
spacers (and their homologs) were removed for ease of use, despite 
potentially contributing to the virulence and pathogenicity potential of 
Salmonella (Louwen et al., 2014). This generated a 
dictionary/pan-genome of 18,520 unique genes, including potential 
gene homologs, which were nevertheless assumed to be heterologous 
and included as predictors in the initial model. 

2.3. Model development and statistical analysis 

Here, the individual and combined effects of the predictor variables 
gene presence/absence (categorical; 1 or 0), mean daily average tem-
perature (in ◦C) (continuous), precipitation (in cm), and snowfall 
average (in cm) on the response variable (number of illnesses per 
outbreak) was modeled. All models were run with standardized mete-
orological variables (averaged across each individual state, as described 
in 2.1.2) recorded during the month of an outbreak (no lag) and two 
months before an outbreak (two-month lag). The latter analysis (two- 
month lag) was performed to determine the delayed effect of weather 
factors, particularly temperature, on outbreak outcome, since prior 
studies have described how salmonellosis risk appears to be highest 2–6 
weeks after exposure to elevated temperatures (Robinson et al., 2022). 
All statistical analyses and modeling were performed on STATA 16 
(StataCorp, 2019). Model significance was set at p < 0.05, and predictor 
significance was tested at both p < 0.05 and 0.10. 

2.3.1. Feature selection: identification of highly predictive genes 
The size of the predictor matrix (p = 18,520; i.e., the number of 

predictor variables) in our model would be much larger than the number 
of samples (n = 497), which is also known as the p » n problem. As such, 
our model could suffer from predictive capacity, dimensionality issues, 
and model overfitting (Candes and Tao, 2007). Additionally, genes 
coding for the same biological pathway tend to be highly correlated (Zou 
and Hastie, 2005), which would also impact the predictive capacity of 
the model. Model quality and interpretation can be improved by 
employing penalization techniques that would identify fewer signifi-
cant, highly predictive variables, which could be employed in the model. 
In this study, this was performed using Elastic Net, a powerful method 
used to automatically reduce (or ‘shrink’) the number of 

non-discriminative (or non-informative) features within the dictionary, 
while selecting groups of correlated variables that add significantly to 
the model (Zou and Hastie, 2005). In our study, the penalized objective 
function for Elastic Net is 

Q=
1
N

∑N

i=1
wif (yi, β0 + xiβ

′

) + λ
∑p

j=1
κj

((
1 − α

2

)

β2
j +α

⃒
⃒βj

⃒
⃒

)

(1)  

where N indicates the number of observations, wi denotes the 
observation-level weights, f() denotes the likelihood contribution for the 
Poisson model, β0 denotes the intercept, xi is the 1 x p vector of cova-
riates, β is the p-dimensional vector of coefficients on covariates x, λ is 
the lasso penalty parameter that must be greater than or equal to 0 and 
controls the amount of shrinkage, Κj are coefficient level weights, and α 
is the Elastic Net penalty parameter that can only take on values in the 
[0, 1] dimension and controls the type of shrinkage. The estimated β 
minimizes the penalized objective function Q for given values of α and λ 
(penalty coefficient). Here, when α = 1, Elastic Net reduces to lasso, and 
when α = 0, it reduces to ridge regression (equation and explanation 
adapted from: StataCorp, 2021). 

The functional form for the function f() used in a linear (ordinary 
least squares) and Poisson (or other count model, such as negative 
binomial) model are provided in equations (2) and (3), respectively. 

f (yi, β0 + xiβ
′

) =
1
2
(yi − β0 − xiβ

′

)
2 (2)  

f (yi, β0 + xiβ)= − yi(β0 + xiβ
′

) + e(β0+xiβ
′
) (3) 

Elastic Net regularization was performed on the complete dataset on 
STATA using the elasticnet function. In this study, the default α values (1, 
0.75, and 0.5) and a fine grid of auto-generated λ values were tested, 
according to Hastie et al. (2015). The λ grid is set automatically during 
the run. The best (α, λ) pair was selected by 10-fold cross validation; in 
essence, cross-validation was employed to determine the predictive 
performance of our model, wherein a part of the dataset with complete 
information was used to estimate the generalizability of the model in the 
absence of external data. The (α, λ) pair that minimized the value of the 
cross validation function was selected, and the significant non-zero co-
efficients identified by this (α, λ) pair were employed in further models 
as independent predictor variables (StataCorp, 2021). 

2.3.2. Poisson regression 
A Poisson regression model was developed to explain the outcome of 

outbreak case numbers (count data; response variable), with gene 
presence/absence as the primary predictors, and meteorological factors 
as the covariates. The Poisson model, a count-based regression model, 
was selected primarily because our outcome (or dependent) variable 
(illness case numbers) is a numeric count with a limited positive value 
range compared to a continuous variable (Chesaniuk, 2021). 
Count-based regression models can handle these characteristics of 
counts as a dependent variable and do so by using a log-link, thus 
modeling the log of the count (Weisburd et al., 2021). Simply put, our 
model is structured as: 

Pr(Yi = yi|μi, ti)=
e− μiti (μiti)

yi

yi!
(4)  

Where, 

μi = tie(β1X1i+β2X2i+…….+βk Xki) (5)  

Where, the response variable denotes case numbers over the included 
time period, i the outbreak observation included in the model, and Xi 
denotes a vector of independent variables – significant genes identified 
by Elastic Net, monthly average temperature, monthly average precip-
itation, and monthly average snowfall – and their interaction terms, β =
1 … k indicates the regression coefficients, and μ the risk of a new 
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occurrence of the event during a specified exposure event t (if no 
exposure is given, t is assumed to be 1). While the total number of 
included genes from the initial dictionary is very large, the values for 
only those genes that are deemed significant by the Elastic Net model 
were included in the final regression model (all genes with zero or 
shrunken values being automatically eliminated from the model). The 
model fit was determined by analyzing the pseudo R2. 

2.3.3. Negative binomial regression 
Since a Poisson regression makes a restrictive assumption that the 

mean is equal to the variance, the data was also fitted to a second count- 
based model, negative binomial regression, which is a generalization of 
the former model that loosens this restrictive assumption, as shown in 
another study (Shirriff, 2019). The fundamental negative binomial 
regression equation is written as: 

Pr(Yi = yi|μi,α)=
Γ(yi + α− 1)

Γ(α− 1)Γ(yi + 1)

(
1

1 + αμi

)α− 1(
αμi

1 + αμi

)yi

(6) 

Where μi, or the mean incidence rate per unit exposure t (if no 
exposure is given, t is assumed to be 1) is: 

μi = e(ln ti+β1X1i+β2X2i+…βkXki) (7)  

In our study, β = 1 ….k denote the regression coefficients, α = 1/v, 
where v denotes the scale parameter of the gamma (or negative bino-
mial) noise parameter, and X = 1 … k indicates the matrix of predictor 
variables. As in the Poisson regression, important genes and meteoro-
logical factors recorded during the outbreak period were used as inde-
pendent variables. 

3. Results 

Here, a machine learning-based method to identify genetic and 
meteorological features that impact salmonellosis outbreak scale (typi-
fied by number of cases within each outbreak) irrespective of Salmonella 
enterica serovar-level heterogeneity was developed. In order to achieve 
this, (i) whole genome sequences of Salmonella enterica serovars isolated 
from varied environmental sources, corresponding to human outbreaks 
of salmonellosis, were pre-processed to create a Salmonella pan genome, 
(ii) meteorological data corresponding to human outbreaks of salmo-
nellosis were obtained and processed, (iii) important genes were iden-
tified using Elastic Net regularization, and (iv) significant genes were 

incorporated, along with meteorological factors, as predictor variables 
in count-based models to identify their individual or combined impact 
on illness numbers. 

3.1. Outbreak and WGS data collection and preprocessing 

Relevant human outbreaks of Salmonella were selected from the 
NORS dashboard for further analyses based on our inclusion criteria. 
Two hundred and eighty-five outbreaks without serovar information 
and 338 multi-state occurrences were dropped, leaving us with 2844 
outbreaks definitively attributed to different serovars of Salmonella that 
were included for further analyses. Subsequently, the outbreaks were 
matched to Salmonella enterica isolates obtained from food sources and 
the environment based on the date and time of the outbreak and 
matching serovar, in order to build the Salmonella pan genome (Fig. 1). 
The number of cases within a large number of included outbreaks was 
comparatively lower, with a majority of outbreaks having ≤60 cases 
(reported illnesses). This skewed distribution is common with datasets 
with discrete data points that are commonly analyzed by count-based 

Fig. 1. Yearly trend in foodborne salmonellosis case numbers (1998–2017). Only outbreaks included in the final dataset and the number of illnesses (or case 
numbers) from these outbreaks are included in this model. 

Fig. 2. Histogram depicting outbreak trends (illnesses per outbreak) 
observed in our study. A majority of the outbreaks included in our study had a 
small number of overall reported case numbers (n < 20). 
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models (Fig. 2). 
Whole genome sequences across the included Salmonella enterica 

serovars (and matching the time frame of salmonellosis outbreaks) were 
sampled from the NCBI Pathogen Detection web server. Isolates were 
selected from across a number of human, animal, and environmental 
isolation sources. Multiple isolates for each data point were included to 
account for genetic recombination, and directionality and timing of 
evolutionary changes within and among serovars (Grad and Lipsitch, 
2014). Short reads for each isolate were assembled and annotated on the 
PATRIC web server for homogeneity and the final Salmonella 
pan-genome was constructed. 

3.2. Exploratory data analysis – meteorological data 

Exploratory analyses of the trends in month-wise outbreak case 
numbers compared to meteorological factors alone (excluding the 
impact of genetic factors) revealed that the highest temperatures were 
observed between the months of June–August (Fig. 3) and the highest 
rainfall averages (and consequently, the highest precipitation) were 
observed in the month of August (Fig. 4). These, in turn, were correlated 
with increased salmonellosis case numbers. This corresponded well with 
prior knowledge regarding the correlation between meteorological 
factors, such as temperature, and outbreak case numbers. For example, 
Shirriff (2019) found that peak salmonellosis case numbers were 
observed during the warmest months of the year (June, July, and 
August) in the U.S. states of Florida, Illinois, Maryland, Minnesota, New 
York, Ohio, and Washington (Shirriff, 2019). 

3.3. Machine learning-based identification of genes informative to 
Salmonella illness prediction model 

Of the 18,520 genes comprising our Salmonella pan-genome, the 
best-fit Elastic Net model (α value = 0.50 and λ penalty = 2.18) was 
selected by 10-fold cross validation. The model minimizing the number 
of variables to provide a stable model fit (Fig. 5) identified 53 distinct, 
non-zero gene predictor variables that were most informative to the 
model (Fig. 6). It is important to note that the genes identified as sig-
nificant by the model were accessory genes (i.e., did not belong to the 
Salmonella core genome). This is because genes that are present in all 
isolates would not add to the predictive capacity of the final regression 
model (and would only serve as noise in the model). The functionality of 
these genes ranged from virulence (such as the secreted effector protein 
coding gene SteA, putative adhesion large repetitive protein coding 
gene, virulence-associated TolA protein coding gene tolA, among others) 
to temperature-related stress response (RNA polymerase sigma factor- 
encoding gene rpoS) and bacterial metabolism (such as ABC trans-
porters, transcriptional regulators, and fructokinase-coding gene, 

among others). Of note, 13 of the selected significant genes coded for 
bacterial phage proteins. The identified important genes and the known 
or presumed functionalities of the coded proteins are provided in Sup-
plementary Table 1. 

3.4. Poisson regression model outcome 

Poisson regression models were developed using a matrix of gene 
presence/absence and meteorological data, and combinations of these. 
In our study, the model coefficients are interpreted as follows: for a one 
unit change in the predictor variable (x1), the difference in log of ex-
pected case numbers changes by the corresponding regression coeffi-
cient (β1). A simple means of explaining the results of such a model 
would be that a positive coefficient indicates an increase in the predicted 
value of the response variable (salmonellosis illness/case numbers) 
corresponding to the coefficient of the predictor variable, whereas a 
negative coefficient implies a decrease in the predicted response vari-
able with an increase in the value of the coefficient of the predictor 
variable. 

The baseline Poisson regression model identified 28 Salmonella genes 
that were significant in predicting salmonellosis case numbers at p <
0.05 and 5 that were significant at p < 0.10 (Fig. 7). The model con-
taining these 33 predictors showed a significant improvement and fit 
over the null model (Likelihood ratio χ2 statistic = 4604.21; McFadden’s 
pseudo R2 = 0.536; probability > χ2 = 0). The weighted genes varied in 
functionality from metabolism (antiporters, efflux pump-related, ion 
transport-related, transcriptional regulators), survival (e.g. replication 
protein), virulence (phage proteins), and stress response (iron sulfur 
cluster assembly protein, for example). Notably, a majority of predictor 
variables that negatively influenced the outcome were associated with 
signaling and other cellular processes. 

The final Poisson regression model (no lag) with monthly average 
temperature, monthly average precipitation, and monthly average 
snowfall identified 127 predictor terms that were significant (at p < 0.10 
(n = 8) or 0.05 (n = 119)) in predicting the outcome variable. These 
terms included 45 gene-only predictors, each of the 3 meteorological 
predictor covariates, and 79 gene-meteorological interaction terms 
(Supplementary Table 2). The model containing the 119 predictors 
(significant at p < 0.05) showed a significant improvement and fit over 
the null and baseline models (Likelihood ratio χ2 statistic = 5748.22; 
McFadden’s pseudo R2 = 0.669; probability > χ2 = 0). We observed that 
a number of gene predictors that were dropped (i.e. not significant) by 
the baseline model as not significantly associated with outcome pre-
diction were included in this model, indicating the significance of the 
joint impact of meteorological stressors and bacterial gene composition 
on outbreak scale (as typified by case numbers). 

Although the two-month lag model also showed a significant 

Fig. 3. Exploratory data analysis I. Monthly trend in salmonellosis cases 
(included in our study) viewed alongside the mean monthly temperature. Solid 
black line indicates the monthly trend in salmonellosis cases, dotted black line 
indicates a simple 2-point moving averages trend line, error bars indicate 
standard error, and the grey line indicates the monthly average temperature. 

Fig. 4. Exploratory data analysis II. Monthly trend in salmonellosis cases 
(included in our study) viewed alongside the mean monthly precipitation. Solid 
black line indicates the monthly trend in salmonellosis cases, dotted black line 
indicates a simple 2-point moving averages trend line, error bars indicate 
standard error, and the grey line indicates the monthly average precipitation. 
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improvement in fit compared to the null and baseline models, important 
covariates like monthly average temperature and monthly average 
precipitation were dropped from the model (that is, they were found to 
be not statistically different). Moreover, the coefficients (and their 
relationship to the outcome) of the remaining covariates corresponded 
to the no-lag model (with the notable exception of SteA; data not 
included). Thus, the results of this model were dropped from further 
consideration. 

3.5. Negative binomial model outcome 

The negative binomial model was developed similar to the Poisson 
model using significant gene presence/absence and meteorological 
factors as covariates. The negative binomial regression model was used 
to loosen the restrictions set by a Poisson model. We found that the 
negative binomial model did not perform as well as the Poisson 
regression in fitting the data. The baseline (gene only) negative binomial 
model identified 28 predictor variables (χ2 statistic = 517.34; Pseudo R2 

= 0.139; probability > χ2 = 0) that mostly corresponded with those 
identified by the baseline Poisson model, but was not much better than 
the null model. However, based on the improved results observed for the 
multivariable Poisson model, a multivariable negative binomial model 
was also developed. This model showed an improvement over the null 
and baseline models, but performed significantly poorer compared to 
the multi-variable Poisson model, and was ultimately dropped from 
further consideration (χ2 statistic = 912.44; McFadden’s pseudo R2 =

0.244; probability > χ2 = 0). Moreover, the covariates ‘mean average 
daily temperature’ and ‘average precipitation’ were observed to not 
significantly impact the model (data not included). Thus, the results of 
this model were dropped from further consideration. 

4. Discussion 

Climatological and meteorological factors have been repeatedly 
implicated in the rise in incidence and impact (in terms of number of 
illnesses, hospitalizations, etc.) of illnesses caused by bacterial agents 
such as Salmonella enterica (McMichael, 2015; Rose et al., 2001; 
Simental and Martinez-Urtaza, 2008). Particularly, a positive associa-
tion has been reported between diarrheal disease numbers and tem-
perature increase (Singh et al., 2001). Moreover, studies have indicated 
that factors such as increased temperatures and precipitation (as well as 
relative humidity) in the environment lead to an increase in environ-
mental Salmonella presence and persistence (Akil et al., 2014). 

The bacterial genetic code holds the key to unlocking the many se-
crets of bacterial pathogen growth, survival, proliferation, and patho-
genicity. However, its potential is only now being realized, especially 
after the advent of whole genome sequencing. Whole genome 
sequencing is a relatively new technology that is increasingly being used 
by a number of public health laboratories to definitively identify and 
characterize microbial causes of foodborne illnesses. Currently, in large 
part thanks to reducing costs and rapid turnover time, WGS is being 
applied to surveillance and disease outbreak investigation, and identi-
fying the key mechanisms behind pathogen virulence and survival to 
understand and minimize the occurrence of pathogens in food (Fritsch 
et al., 2018a; Pornsukarom et al., 2018). However, identifying the un-
derlying trends, correlations, and relationships from such data adds 
multiple dimensions to even simple survival kinetics, necessitating 
multi-dimensional analytical considerations (Strawn et al., 2015). Thus, 
a primary consideration of researchers is to develop methods to analyze 
large datasets and obtain meaningful data from WGS, specifically in the 
case of preventative modeling of pathogen growth, survival, and overall 
human health risk. 

Machine learning is increasingly being applied in the food safety 
domain to incorporate WGS data in many aspects of predictive 
modeling, specifically in identifying trends in bacterial virulence (Kar-
anth et al., 2022; Njage et al., 2019a, 2019b; Tanui et al., 2022), path-
ogen source attribution (Munck et al., 2020), and in developing 

Fig. 5. Best-fit Elastic Net cross-validation plot and coefficient path. a) The CV plot indicates the best-fit α value and λ penalty that minimizes the cross 
validation function. The best-fit Elastic Net model netted 53 non-duplicate coefficients, at an α value = 0.50 and λ penalty = 2.18. b) The coefficient path, or solution 
path, for the Elastic Net model provides a compact representation of all optimal solutions for the model. 

Fig. 6. Significant genes identified by Elastic Net model (n = 53) and their 
functional classes. The functional classes (derived from an extensive literature 
survey) corresponded well with the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) Orthologous Group (OG) classification. 
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gene-based risk assessments (Fritsch et al., 2018b) to predict the risk of 
disease given exposure. However, so far, studies have not analyzed the 
joint impact of a pathogen’s genetic expression and meteorological 
factors such as temperature and precipitation on the pathogen’s infec-
tivity and outbreak scale (in terms of case or illness numbers). In this 
study, we have utilized gene presence/absence data, which is more 
readily obtainable from whole-genome sequencing compared to gene 
abundance data, which would be a more ideal metric for effect 
estimation. 

Here, we used outbreak case numbers consolidated by outbreak area 
(state), month and year as the outcome variable, and gene expression 
data and meteorological variables, specifically state-wise monthly 
average temperature, precipitation, and snowfall, as predictor variables 
in a Poisson regression model (since the outcome variable is in counts) to 
identify genes and environmental covariates that are highly correlated 
with salmonellosis case numbers. An important consideration when 
utilizing large gene matrices in predictive modeling is identifying and 
selecting the smallest possible set of relevant genes that can help achieve 
good predictive performance, without model overfitting or including 
features that are irrelevant or redundant to the prediction process 
(Guyon et al., 2003). In the presence of such data, it is important to 
employ a statistical approach to select meaningful subsets of predictors 
for samples with complete data, similar to the approach used by Amene 
et al. (2016) to predict mortality rates associated with foodborne dis-
eases. Elastic Net has previously proven to be effective (with an accuracy 
of >90%) in identifying genetic features of interest related to lung 
cancer (Hughey and Butte, 2015). Thus, in our study, feature selection 
was performed by Elastic Net to pre-process the large genetic dataset to 
be employed in our predictive models. Of the 53 distinct non-zero gene 
terms identified as important by Elastic Net, 27 coded for metabolism, 
cellular maintenance, biological transport, virulence, and stress 
response-related processes, 13 were phage proteins associated mostly 
with bacterial virulence, and the remaining 13 did not present with a 
clear functional classification (Fig. 6). These also corresponded well 
with the Kyoto Encyclopedia for Genes and Genomes (KEGG) ortholo-
gous group classification, wherein a majority of the identified genes 
coded for metabolism and signaling and cellular processes, including 
secreted effectors, transporters, and assorted protein families. Meteo-
rological data for each observation was averaged from data obtained 

from all weather stations in the respective state during the month of the 
outbreak, similar to the approach used by Akil et al. (2014), with the 
trends, particularly in relation to the average temperatures, corre-
sponding well with those reported previously by Shirriff (2019). 

The best-fit Poisson regression model, which contained 127 signifi-
cant genes (n = 45), meteorological attributes (n = 3) and gene inter-
action (n = 79) terms, had a pseudo R2 of 0.669. Since the pseudo R2 

value is influenced by the sample size, number of predictor variables, 
and number of categories of the dependent variable, setting the inter-
pretation for model fit and stability using the pseudo R2 must explicitly 
consider these characteristics (Hemmert et al., 2018). Our pseudo R2 of 
0.669 is higher than the benchmark range highlighted by Hemmert et al. 
(2018), who identified a pseudo R2 of >0.4 to indicate an excellent 
model fit, given the sample size and number of predictor (and interac-
tion) variables included in our model. This model identified a number of 
genes and gene-meteorological interaction terms that significantly 
contributed to salmonellosis outbreak scale (Supplementary Table 2). 
Among the 51 genes that impacted the Poisson model individually (n =
45) or interacting with a meteorological term, 25 coded for proteins 
associated with bacterial signaling and cellular processes (such as 
secreting virulence effectors) and metabolism (such as participating in 
the pentose phosphate pathway or deoxyribonuclease pathway), 9 
coded for phage proteins, and others coded for proteins participating in 
a host of miscellaneous cellular activities, such as homologous recom-
bination and environmental signal processing. Specifically, genes coding 
for Salmonella effector A, which is translocated by both the Salmonella 
pathogenicity island (SPI)-1 and the SPI-2 type 3 secretion systems 
(T3SSs) (SteA), putative resistance protein (YqiE), putative chaperone 
with DNA J-like domain (YbeV), phage tail fiber protein, mobile element 
protein, and phage replication protein GpA exerted a noticeable impact 
on the number of illnesses, compared to other variables. In general, we 
observed that a majority of significant gene-only variables were posi-
tively correlated with salmonellosis case numbers. Among those that 
were negatively correlated with the number of illnesses, the gene 
functionality ranged from phage-related virulence, bacterial meta-
bolism, and membrane transport. In sharp contrast, interaction effects of 
a large number of phage proteins with environmental temperature were 
negatively correlated with outbreak scale, indicating that for every one 
unit increase in temperature, the probability of the interacting gene 

Fig. 7. Significant genes identified in the baseline Poisson regression model. The baseline model determined the impact of genes only on salmonellosis outbreak 
scale. The plot demonstrates the relative importance of the signficant genes - the Poisson regression coefficients (βk) indicate the multiplicative change in the ex-
pected count of salmonellosis cases for a unit increase in the corresponding gene predictor, given all other predictors are kept constant. 
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predicting the log of the illness outcome increases by the value of the 
coefficient. For example, when an interactive predictor has a coefficient 
of 0.05, for every 1 unit increase in temperature, the gene’s effect on the 
outcome increases by 0.05. Concurrently, we observed that the 
temperature-interaction effects of a large percentage of metabolism and 
cell maintenance-related proteins were positively correlated with 
outbreak scale. This is in agreement with the conclusions of Dawoud 
et al. (2017) and Pin et al. (2012), who reported an upregulation in 
stress-, energy metabolism-, and cellular mechanism-related genes in 
Salmonella enterica under thermal and other stress conditions. We also 
observed a positive correlation between the average precipitation effect 
and outbreak scale, which is in line with a prior report by Soneja et al. 
(2016). The precipitation-gene expression interaction patterns were 
similar to those observed for the temperature-gene expression effects. 
Interestingly, we also observed a positive correlation between average 
snowfall and outbreak scale, which in turn could be correlated with the 
increased precipitation (Holley et al., 2008; Piekarska, 2010). Interest-
ingly, genes coding for the effector protein SteA and the uncharacterized 
protein YbeV, which are associated with Salmonella virulence (Azimi 
et al., 2019) and stress response (Kobayashi et al., 2005), respectively, 
were significant individually and in combination with all three meteo-
rological variables. 

Our study showed some confounding results regarding the effect of 
temperatures on outbreak scale (as defined by number of illnesses). We 
observed that, for a one ◦C increase in average temperature, the differ-
ence in log of expected case numbers would be expected to decrease by 
195.35. While this relationship is contrary to published literature, which 
have repeatedly found a positive association between temperature and 
salmonellosis incidence rates, and our own exploratory data analysis, 
the results are in agreement with those of Semenov et al. (2007), who 
reported similar inconsistent conclusions about temperature levels 
contributing to Salmonella survival. In essence, they found that Salmo-
nella survival significantly declined with increasing average tempera-
tures, indicating that fixed measures of parameters such as temperature 
and precipitation need not necessarily capture the impact of fluctuating 
temperatures (as is commonly seen under natural conditions, captured 
by meteorological measurements) on the characteristics of Salmonella. 
This also corresponded with the results of Kynčl et al. (2021) from a 
long-term retrospective study conducted in the Czech Republic, who 
found an asymptotic curve approaching the extremes of mean monthly 
temperatures, despite a linear relationship between air temperatures 
and outbreak cases between 1 and 15◦C. 

Our study has a few limitations. As in the case of most analyses 
pertaining to foodborne outbreaks, our dataset is limited by under-
reporting of illnesses. For example, a majority of illnesses associated 
with Salmonella infection may be self-limiting, and therefore not serious 
enough to warrant testing, let alone hospitalization. Second, since our 
WGS dataset is built from among isolates obtained to correlate with 
salmonellosis outbreaks (based on time and location of isolation, rela-
tive to time and location of outbreaks), the initial pan genome dataset is 
not wholly representative of all Salmonella serovars specifically associ-
ated with foodborne diseases in humans. Moreover, while WGS can 
determine if a microbe is the root cause of a foodborne outbreak, a lack 
of defined thresholds regarding genetic differences and the dependency 
of similarity (to other isolates) identification on prior knowledge (from 
previous outbreaks, etc.) makes it difficult to conclusively determine the 
level of mutation needed to identify an isolate as truly being ‘different.’ 
Additionally, our machine learning-based model predictions are per-
formed using historical monitoring data and other available informa-
tion, and not experimental data, with the goal of predicting future trends 
in food safety-related risks. Since these models cannot be validated using 
experimental data, as this would require artificial manipulation of the 
meteorological covariates, we acknowledge that these models cannot be 
used to derive causality. However, the model predictions (and resultant 
correlations) have been validated using cross validation, and can be 
further validated with the availability of data in the future. Finally, due 

to the small number of data points, meteorological factors have been 
pooled within each sampled states, since the effects of these factors 
taken from individual state level data were not significant. Such issues 
necessitate field- and laboratory-level analyses of the changes observed 
in pathogens under specific conditions that can be observed in the 
environment to truly capture the genome-level effect of factors (such as 
meteorological factors) on Salmonella persistence and virulence, and 
subsequently, its effect on outbreak scale. 

5. Conclusion 

In our study, we developed multi-variable Poisson regression models 
to determine the impact of Salmonella enterica genes, pooled (by month 
and year) meteorological factors, and their combinations on Salmonella 
outbreak scale. We identified a large number of genes that significantly 
impacted the outcome, specifically those coding for metabolism, cellular 
function, and stress response. Ambient temperature and precipitation 
also played a role (individually and in combination with significant 
genes) in predicting outcome scale. However, our study had a few lim-
itations: since our dataset was defined by our inclusion criteria, the total 
number of isolates included was limited. Moreover, since exact peer-to- 
peer matched isolate data was unavailable corresponding to each 
outbreak, our data collection was based on specific associations. Here, 
we attempted to overcome this by analyzing multiple sequences across 
sources to incorporate potential heterogeneities. Increasing data avail-
ability, as well as incorporating important metadata parameters during 
the collection phase of bacterial isolates, are important steps towards 
developing more well-rounded datasets to develop and validate these 
models in the future. We envision this as the first step towards incor-
porating the effect of bacterial gene expression in models predicting 
bacterial foodborne outbreak scale, which are traditionally based on 
environmental and processing-related factors. 
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