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Lillian A Musila, Rene S Hendriksen, Daniel G Amoako, David M Aanensen, Iruka N Okeke, Beverly Egyir, Jamie G Nunn, Janet T Midega, 
Nicholas A Feasey, Sharon J Peacock, for the SEDRIC Genomics Surveillance Working Group

Historically, epidemiological investigation and surveillance for bacterial antimicrobial resistance (AMR) has relied on 
low-resolution isolate-based phenotypic analyses undertaken at local and national reference laboratories. Genomic 
sequencing has the potential to provide a far more high-resolution picture of AMR evolution and transmission, and 
is already beginning to revolutionise how public health surveillance networks monitor and tackle bacterial AMR. 
However, the routine integration of genomics in surveillance pipelines still has considerable barriers to overcome. 
In 2022, a workshop series and online consultation brought together international experts in AMR and pathogen 
genomics to assess the status of genomic applications for AMR surveillance in a range of settings. Here we focus on 
discussions around the use of genomics for public health and international AMR surveillance, noting the potential 
advantages of, and barriers to, implementation, and proposing recommendations from the working group to help to 
drive the adoption of genomics in public health AMR surveillance. These recommendations include the need to build 
capacity for genome sequencing and analysis, harmonising and standardising surveillance systems, developing 
equitable data sharing and governance frameworks, and strengthening interactions and relationships among 
stakeholders at multiple levels.

Background
In early 2022, the Surveillance and Epidemiology 
of Drug-resistant Infections Consortium (SEDRIC) 
convened a working group to evaluate the use of 
genomics for conducting surveillance of antimicrobial 
resistance (AMR) in bacterial pathogens. The second in a 
series of workshops (see the first paper in this Series1) 
entitled Public Health and International was held on 
March 29, 2022, and aimed to conduct a situational 
analysis of the use of genomics for AMR surveillance 
across public health surveillance networks (ie, at national 
and international levels); reach a consensus on where the 
use of genomics for AMR surveillance adds value in 
these settings; and develop and prioritise stakeholder 
recommendations for the implementation or 
enhancement of genomics for AMR surveillance.1 Here, 
we summarise the discussion, highlighting general 
advantages and specific use cases for genomic AMR 
surveillance for public health, and elaborate on the 
working group’s recommendations for overcoming 
barriers to unlock the considerable potential of genomics 
to improve public health AMR surveillance.

Advantages and applications of genomics for 
AMR surveillance in public health
Historically, bacteria causing disease in humans have 
been identified to species or serotype level in clinical 
laboratories. To describe bacteria in greater depth to aid 
epidemiological investigation and regional surveillance, 
they are sometimes also sent on to reference laboratories 

for further subtyping. This process is highly specialised 
for each pathogen and includes both extensive phenotypic 
and, more recently, molecular or subgenomic methods 
such as pulse field gel electrophoresis or multilocus 
sequence typing. However, it is now possible to 
characterise and distinguish bacteria through genomic 
sequencing, making some of these laboratory processes 
redundant and harmonising other aspects of the 
workflow. Sequencing platforms are an adaptable 
infrastructure that can be tailored to any pathogen, 
including those causing emerging infectious diseases, in 
support of pandemic preparedness and responses. 
Unlike earlier typing approaches, which were usually 
only feasible in reference laboratories, genomic 
surveillance is technically possible using a bench-top 
sequencing machine in any laboratory. However, some 
infrastructural change might be needed to accommodate 
compartmentation of activities and housing of specialist 
equipment (eg, as noted by Kekre and colleagues2), 
particularly if diagnostic PCR is not routine, as is the 
case in some low-income and middle-income countries 
(LMICs). Thus, there are some advantages in centralising 
sequencing services in reference laboratories, including 
the higher scale and throughput, making sequencing 
more cost-effective than implementation of genomics in 
smaller, more local laboratories. However, this needs to 
be balanced with the potential disadvantages, such as the 
increased turnaround times associated with moving 
isolates from one location to another. Ultimately, the 
right implementation model will depend on the 

Series

https://sedric.org.uk/working-groups/
http://crossmark.crossref.org/dialog/?doi=10.1016/S2666-5247(23)00283-5&domain=pdf


2 www.thelancet.com/microbe   Published online November 14, 2023   https://doi.org/10.1016/S2666-5247(23)00283-5

Series

sensitivity for rapid turnaround time for a given 
indication, the broader public health infrastructure, and 
funding levels (see the second paper in this Series3).

Regardless of where and how the data are generated, 
the level of detail provided by genomics is superior to 
that provided by previous methods, while also allowing 
some data processing steps to be streamlined. Genomic 
data supports the surveillance of pathogens at levels 
ranging from lineage (used here to refer to all genomic-
informed nomenclature; eg, clone, sublineage, clade, 
core genome multilocus sequence type, and HierCC 
groupings) to the highly granular ability to identify 
genomically identical isolates. Genomics also facilitates 
the detection of genetic determinants of AMR (and their 
vehicles; eg, plasmids), virulence, and other relevant 
phenotypic markers that were previously only explored 
using molecular techniques, such as PCR. The electronic 
nature of genomic data also allows sequencing outputs to 
be shared and analysed among laboratories and in 
bioinformatic hubs (either physical or cloud based), for 
retrospective and international data comparison and 
for external quality assessments of genomic and 
bioinformatic processes.

Among the working group there was strong consensus 
that better advocacy and articulation of the use cases for 
genomic AMR surveillance were needed. The two main 
use cases for genomic surveillance of AMR in the public 
health setting were proposed to be detecting and 
understanding novel and emerging threats, and 
informing and assessing public health interventions. To 
better articulate these use cases, we provide examples of 
each of the applications below.

Genomics for detecting and understanding emerging 
public health threats
High-resolution views of bacterial populations and AMR 
determinants offered by genomic analyses have greatly 
enhanced our ability to detect and monitor emerging 
AMR threats over time, by geographical location, and 
through public health or laboratory networks and patient 
communities. However, genomic AMR surveillance 
mechanisms are not yet integrated as standard in most 
countries or regions. As such, there are numerous 
examples of substantial recent epidemics or pandemics 
that have been missed owing to the inability to resolve 
new or rapidly spreading variants of bacterial species that 
might have met the criteria for a Public Health 
Emergency of International Concern had they been 
detected. These variants include globally circulating 
blaCTX-M15-producing Escherichia coli, multidrug-resistant 
Salmonella typhimurium ST313 in Africa, and 
fluoroquinolone-resistant Shigella sonnei.4–6

Food microbiology reference laboratories have been 
early adopters of genomic surveillance. Some of these 
laboratories and networks (typically in high-income 
countries) have already implemented routine sequencing, 
and, thus, offer an ideal opportunity from which to learn 

and leverage best practices and platforms for introducing 
and enhancing genomic AMR surveillance in other 
contexts.7–10 A large body of evidence on Salmonella spp, 
Shigella spp, Listeria monocytogenes, shiga-toxigenic E coli, 
and Campylobacter spp ably shows the enhanced ability of 
genomic epidemiology to detect outbreaks in dispersed 
geographical areas and identify the source of outbreaks.11–17 
Some of these studies focused explicitly on the detection 
of newly emergent lineages with AMR16,18–21 and the 
spread of mobilisable AMR.22,23 These datasets not only 
contribute to AMR monitoring,7,24 but also help to validate 
the use of genomics for the surveillance of AMR 
determinants, with multiple studies showing reliable 
genotypic prediction of AMR25,26 (although this is not true 
for all pathogens—see later, and the fifth paper in this 
Series27) and other relevant phenotypes (eg, serotype and 
virulence).28–30

PulseNet, one of the largest international foodborne 
disease surveillance networks, previously relied on pulse 
field gel electrophoresis for typing, but is transitioning to 
use genomics to enhance international surveillance, 
largely through the GenomeTrakr distributed network 
of laboratories.31,32 However, a survey of PulseNet 
laboratories identified a lack of funding, as well as gaps 
in expertise and training (especially for data analysis and 
interpretation), as the main barriers preventing the 
widespread uptake of genomics for surveillance, 
particularly in LMICs.33 Importantly, foodborne illness 
surveillance in highly developed agricultural settings is 
frequently coupled with clear public health interventions 
to address outbreaks, but this is less often the case in 
informal agricultural systems found in many LMICs. 
The ability to detect threats from AMR and inform 
interventions in near real time is an important factor in 
accelerating the uptake of genomic surveillance. The UK 
experience already suggests that implementation of 
routine genomic sequencing for Salmonella has identified 
a greater number of outbreaks than would have been 
detected using routine microbiology.34,35 Thus, as genomic 
surveillance is adopted more widely, we anticipate a 
substantial increase in the number of outbreaks detected, 
highlighting the need to be able to prioritise outbreaks 
for intervention based on features of the causal bacterial 
pathogen.

There have also been substantial global efforts to 
harmonise AMR surveillance of health-care-associated 
infections (HCAIs) across networks.36,37 Multiple large 
studies of Enterococcus faecium, Staphylococcus aureus, 
Klebsiella pneumoniae, Acinetobacter baumannii, 
Pseudomonas aeruginosa, and Enterobacter spp and other 
HCAI pathogens have identified regionally dominant 
lineages and placed them in a global context.38–40 The 
identification of globally emerging or dominant lineages 
with AMR (eg, E coli ST131, K pneumoniae ST258, and 
S aureus USA300) have helped to focus research and 
control efforts.41 Similar to foodborne illnesses, genomic 
surveillance of HCAIs can illuminate the genetic basis 
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and spread of new or concerning AMR bug–drug 
combinations42–49 and characterise other phenotypes of 
interest (eg, serotype and virulence).38,50,51 Genomics has 
also been used to investigate changes in the bacterial 
lineages occurring across health and social care 
networks52–54 and in multihospital surveillance to identify 
hidden transmission patterns and previously undetected 
outbreaks.55–57 The enhanced resolution of genomics has 
also enabled more detailed epidemiological studies, such 
as the identification of potential Clostridioides difficile 
transmissions in north Wales and the demonstration 
that a failure to meet cleaning targets was not associated 
with higher-than-expected transmissions.58 Highlighting 
such use cases for genomic data (whether generated in 
reference or front-line laboratories) is vital as genomics 
for HCAI is often in competition with automated clinical 
diagnostic antimicrobial susceptibility testing tools, 
which offer enhanced turnaround times, but 
comparatively little additional information to inform 
broader surveillance efforts, understand transmission 
dynamics, and prevent HCAIs.59

Genomics for shaping and monitoring public health 
interventions
Numerous longitudinal studies of AMR have shown the 
value of routine genomic surveillance in shaping public 
health interventions at national and international levels, 
including informing treatment recommendations and 
influencing vaccination regimens.

Longitudinal genomic surveillance of Neisseria 
gonorrhoeae, the causative agent of the sexually 
transmitted infection gonorrhoea, and a WHO priority 2 
pathogen for which antimicrobials are urgently needed,60 
has been used to shape treatment recom mendations. An 
early global study61 identified major sublineages with 
different AMR profiles, including a multidrug-resistant 
lineage associated with men who have sex with men that 
has sequentially evolved resistance to last-line treatment 
options azithromycin and ceftriaxone.62 Ongoing 
genomic surveillance has shown that N gonorrhoeae 
rapidly evolves in response to changing treatment 
recommendations. For example, a rise in cefixime 
resistance led to a change in EU–European Economic 
Area treatment recom mendations in 2012 to dual therapy 
with ceftriaxone and azithromycin,63 which was followed 
by a decrease in resistance to extended-spectrum 
cephalosporins but an increase in azithromycin 
resistance.64,65 In turn, this led some countries to 
recommend ceftriaxone monotherapy for treating 
uncomplicated gonorrhoea.66,67 Genomic analyses of 
isolates from the European Gonococcal Antimicrobial 
Surveillance Programme identified the basis for these 
shifting phenotypes.68 Specifically, lineage G1407 
(previously associated with decreased susceptibility and 
resistance to extended-spectrum cephalosporins69) is now 
being replaced by G12302, an azithromycin-resistant 
lineage. Genomic analysis of European Gonococcal 

Antimicrobial Surveillance Programme data has also 
revealed the absence of resistance mutations to 
zoliflodacin and gepotidacin, which are currently in 
phase 3 randomised controlled trials for the treatment of 
gonorrhoea.68,70 This cyclical use of genomic AMR 
surveillance to shape and assess new and prospective 
treatment regimens highlights a key use case for ongoing 
genomic surveillance to tackle AMR.

Similar value has been seen in using genomic 
surveillance of Streptococcus pneumoniae for informing 
vaccination programmes, an increasingly prominent 
preventive strategy against AMR.71 Specifically, the global 
deployment of the pneumococcal conjugate vaccine 
(PCV) has been effective in reducing pneu mococcal 
disease worldwide72 and has had a positive impact on 
reducing AMR.73 However, the current PCVs only 
target 13 of more than 100 distinct capsule types (ie, 
serotypes). Incomplete coverage of all serotypes in the 
vaccine has allowed the pneumococcal population to 
evolve and evade the vaccine resulting in serotype 
replacement.74 The global pneumococcal sequencing 
(GPS) project has shown the utility for genomics in 
evaluating changes in S pneumoniae populations 
following the roll-out of PCV by detecting shifts in 
serotypes, and relating these to the genomic lineages and 
AMR use data from more than 50 countries.75 The 
outputs of these studies have guided the choice of future 
vaccines and treatment options. Specifically, analyses 
have identified vaccine-evading subtypes like the 
multidrug-resistant global pneumococcal sequence 
cluster 10 (GPSC10) that expressed 17 different serotypes. 
After the introduction of PCV13, GPSC10 rapidly adapted 
to the vaccine-selective pressure and caused invasive 
disease by expressing a high invasive disease potential 
serotype 24F (not included in PCV13) in multiple 
countries.76 This information has subsequently guided 
the inclusion of serotype 24F in the upcoming PCV 
formulation. The availability of genome data faciliated 
the modelling of the prospective effect of new PCV 
formulations to guide public health agencies in vaccine 
formulation to maximise the reduction in pneumococcal 
disease.77 These retrospective analyses and prospective 
scenario modelling provide evidence of the value of 
genomic surveillance in cycles of shaping interventions, 
evaluating their effect, and monitoring the resulting 
changes in bacterial populations.

Barriers to genomics implementation at a public 
health level
The types of barriers to implementation of genomics for 
AMR surveillance differ depending on the setting. 
However, the examples provided by food microbiology 
reference laboratory surveillance and SARS-CoV-2 
surveillance systems offer lessons for overcoming these 
barriers and finding pathways to adoption. Some settings 
are more advanced in this process than others. In LMICs, 
poor supply chains, unfavourable costing models for 



4 www.thelancet.com/microbe   Published online November 14, 2023   https://doi.org/10.1016/S2666-5247(23)00283-5

Series

consumables, and unreliable equipment maintenance 
support have hampered the establishment of sustained 
operations and deterred investment (as experienced by the 
working group and reported by Davedow and colleagues33). 
Other practical barriers identified included concerns 
around harmonisation and standardisation, and lack of 
sufficient isolates, epidemiological data, infrastructure, or 
political will (or a combination of these) to implement, 
sustain, or improve genomic AMR surveillance. Additional 
barriers include inadequate funding to establish and 
support ongoing genomic surveillance, insufficient 
knowledge exchange between academia and public health 
institutes leading to a duplication of effort, problems with 
epidemiological data linkage, and a lack of training in 
genomic and bioinformatic analysis (the latter is addressed 
more thoroughly in the second paper in this Series3). 
Many of these barriers probably result from imperfect 
relationships and poorly defined expectations among 
policy makers, the research community, the private sector, 
and public health providers, highlighting the importance 
of building trust, cooperation, and common goals in these 
areas.

Recommendations from the working group
Based on workshop discussions, the working group made 
a series of recommendations centred around five main 
areas: (1) building capacity in hub and spoke 
models (also covered in the second paper in this Series3); 
(2) harmonising and standardising surveillance systems; 
(3) developing and agreeing equitable data sharing and 
governance frameworks; and (4) improving stakeholder 
interactions and relationships. The fifth area of focus was 
delivering training to strengthen genomic surveillance 
competence among the health scientist workforce which 

is reported more thoroughly in the second paper in this 
Series. Recommendations from the working group are 
captured in a stakeholder focused interaction map (figure).

Building capacity with hub and spoke models
Where not already in existence, health policy makers and 
national ministries and departments of health should 
establish and equip national or regional reference 
laboratories to act as hubs in hub and spoke models. 
Local laboratories can then submit bacterial isolates or 
locally generated sequence data to enable analysis of the 
national or regional context (covered further in the 
second paper in this Series3). National or regional 
reference laboratories can provide community services 
by acting as hubs for aggregated data analysis, and 
centralised expertise to provide training and external 
quality assurance schemes and materials—eg, well 
characterised bacterial strains or genomic DNA, such as 
those shared by the Danish Technical University with UK 
AID Fleming Fund SEQAFRICA and the EU Reference 
Laboratory for antimicrobial resistance network.78,79 They 
might also host computational or web-based platforms 
that allow other laboratories undertaking whole-genome 
sequencing to submit data to conduct their own analyses 
or receive an output that places their data into context. 
National or regional reference laboratories could also 
offer centralised sequencing services that benefit from 
the economy of scale for results that might be less 
dependent on rapid turnaround times (eg, those 
requiring clinically actionable timeframes), but the 
appropriate model for distribution of sequencing 
depends on the resources of the system (see the second 
paper in this Series3).

Harmonising and standardising surveillance systems
Define pathogens and AMR focus to help implement whole-
genome sequencing systems
There was general agreement that organism-specific 
analysis pipelines were needed and that the WHO priority 
pathogens60 and Global Antimicrobial Surveillance
System80 pathogen lists provide a good starting point for 
identifying target organisms. However, for practical 
implementation, these lists should be initially focused on 
attainable use cases addressing specific bug–drug 
combinations, contexts, or objectives, before devoting 
existing capacity or building new dedicated surveillance 
pipelines. Pathogen prioritisation should take into 
consideration how the data output can be used in 
interventions, such as improved antimicrobial stewardship, 
outbreak and infection prevention and control measures, 
or vaccine use. It should also be further refined based on 
country-specific or region-specific health priorities.

Greater involvement of clinical standards organisations
The European Committee on Antimicrobial Susceptibility 
Testing (EUCAST) and WHO have already published 
reports on the role of genomics for bacterial antimicrobial 

Figure: Stakeholder interaction map for improvement of the application of genomics for antimicrobial 
resistance surveillance
Stakeholders within health delivery are in lighter pink encircled in a box. MoHs=ministries of health. IPC=infection 
prevention and control. CSOs=clinical standards organisations. NRRLs=national and regional reference laboratories. 
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susceptibility testing and for AMR surveillance.80,81 These 
and other international organisations, such as the 
Clinical Laboratories Standards Institute, can still have a 
valuable role in the development of standards for 
genomics for AMR surveillance. Such organisations are 
well placed to develop consensus protocols and quality 
control metrics for the use of genomics in AMR 
surveillance. Some of this work has already commenced. 
Harmonising organism-specific analytic approaches, as 
well as interpretive and reporting criteria (as currently 
done for phenotypic susceptibility testing), is essential 
for data comparison across countries and with other 
parts of the One Health triumvirate (ie, surveillance in 
animals and the environment). Ideally, standards would 
be produced using an open model (as used by EUCAST) 
rather than a pay-to-access model (as typically used by the 
Clinical Laboratories Standards Institute). Standards are 
also needed for the initial assessment of new analytical 
pipelines, akin to the International Standardization 
Organization standard 20776-2 or US Food and Drug 
Administration guidance that outline acceptable 
performance criteria for new susceptibility testing 
devices, and downstream external quality assessment 
processes. In this regard, some headway has been made 
for laboratory proficiency testing of genomics in the 
GenomeTrakr network.82,83 Achieving consensus on 
analytical tools and reference databases around which to 
build pipelines will be challenging as protocols are 
rapidly evolving. However, meeting regulatory standards 
for the use of genomic data in public health microbiology 
(eg, International Standardization Organization 15189 
accreditation) needs to be progressed, and in one case 
has recently been achieved for AMR in Salmonella spp.84 
One approach would be a standardised pipeline for 
species identification, followed by organism-specific 
pipelines for AMR detection, but that are accessed 
through a single-user portal (eg, Galaxy, Pathogenwatch, 
Center for Genomic Epidemiology, and the Pathosystems 
Resource Integration Centre).83,85 Decisions about 
updating organism-specific databases should be guided 
by steering groups consisting of research groups and 
reference laboratories with organism-specific expertise 
(like the model developing in Pathogenwatch)86,87 and 
with endorsement of health policy makers.

Improving academic, research, and public health institution 
partnerships
Genomics researchers need well defined questions from 
clinicians and public health specialists to properly assess 
the feasibility of genomics to produce actionable outputs. 
There are good examples of partnerships between 
academic and public health institutes (eg, England’s 
National Institute for Health and Care Research [NIHR] 
Health Protection Research Units; African public health 
institutes; the Network for Genomic Surveillance in 
South Africa; Global Pneumococcal Sequencing project 
public health partners; and, in Australia, the Doherty 

Institute, AusTrakka, and the Australian Pathogen 
Genomics Program).88 However, not all public health 
institutes or researchers have such partnerships. 
Researchers will benefit from implementation of their 
genomics protocols and tools by public health institutes 
and evaluation by health economists to show their impact 
and cost-effectiveness in a real-world setting,89–91 with this 
impact supplementing and potentially superseding 
publication as a metric for success. Such partnerships 
can enable genomic data to be fully exploited by 
answering specific public health questions, such as 
shaping vaccination programmes.92–94 To date, a shortage 
of trained bioinformatic staff has impeded technology 
transfer into public health, yet academic–public health 
partnerships clearly benefit from the availability of 
bioinformatics expertise for improving service provision 
through analysis pipeline development, improving 
genotype–phenotype concordance, and delivering 
training (see the second paper in this Series3).

Interpretability and richness of information derived from 
genomic data
As the mechanisms that mediate AMR can differ between 
bacterial genera, different AMR determinant databases 
and analytical standards are required. There is a lack of 
evidence on the agreement between AMR phenotype and 
genotype for some bug–drug combinations, and 
researchers at the interface between public health and 
academia will be vital for resolving this discordance, 
because existing resistance mechanisms become better 
understood and novel AMR-associated genes and 
mutations are identified and added to existing curated 
databases (see the fifth paper in this Series27). Many 
currently used AMR pipelines and databases are 
supported by the academic sector, but will require 
ongoing financial support and investment from health 
budgets in the future. Consideration needs to be given to 
ensuring that analytic pipelines not only detect the 
presence or absence of known AMR genes and mutations, 
but are also designed such that they can detect and 
characterise emerging novel, and more complex95 AMR 
mechanisms. To achieve this outcome, benchmarking 
and the use of machine learning will be required (see 
the fifth paper in this Series27), as will maximising 
interpretation of genomics data for other actionable 
health information (eg, virulence factor profiles and their 
relationship with disease severity).

Developing and agreeing equitable data sharing and 
governance frameworks
Developing agreed data sharing standards is a crucial 
early step, with reference where appropriate to the Nagoya 
protocol on the sharing of non-human genomic 
resources, and ethical considerations.96 Data with the 
most serious of implications that require urgent action by 
public health officials and clinicians (eg, a newly emerging 
AMR pathogen with pandemic potential) should be 
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shared openly, with countries being lauded rather than 
stigmatised for reporting AMR issues. Other than to fulfil 
legal requirements, data sharing can be inadequately 
incentivised and so the benefits of data sharing need to be 
promoted. There is sometimes a reluctance to share data 
in public archives among laboratories and countries 
newly adopting genomics over concern this might lead to 
publication and monetarisation of data by others. 
Establishing governance structures around data sharing, 
such as those being developed in the field of biodiversity,97 
is crucial in building trust and ensuring that any benefits 
are appropriately shared among stakeholders (alongside a 
focus on supporting end-to-end capacity development in 
both sequencing and bioinformatics.3 A lot can be learned 
and adopted from the experiences of various national 
sequencing consortia established during the COVID-19 
pandemic98–102 and the Public Health Alliance for Genomic 
Epidemiology, which has an ethics and data sharing 
subgroup focused on improving equitable data 
governance.103 WHO, the Africa Centers for Disease 
Control and Prevention (CDC) Pathogen Genomics 
Initiative, the US CDC, and the European Centre for 
Disease Prevention and Control could also play leading 
roles in promoting communication in this area, with 
WHO highlighting the critical role of a strong governance 
foundation in their recent global genomic surveillance 
strategy.104 Furthermore, WHO have recently published a 
set of 13 guiding principles for pathogen genome data 
sharing, which cover many of the same areas and 
recommendations included in our genomic AMR 
surveillance workshops, in particular in relation to 
equitable data sharing and governance.105

Improving stakeholder interactions and relationships
At present, a lack of commitment or political will to support 
adoption of genomics for surveillance can be seen in many 
countries, including some where the availability of funding 
might not be prohibitive. Addressing this problem will be 
key for translation into routine public health use. Policy 
makers are continually challenged to invest in public 
health services, yet often focus on services for specific 
conditions or groups of conditions that have effective 
advocacy groups, rather than prioritising preventive 
services, which might have a greater long-term impact on 
health, albeit in an indirect manner that can be challenging 
to quantify. Large-scale sequencing of the SARS-CoV-2 
virus has helped policy makers understand the utility of 
genomics for tracking the transmission and evolution of 
pathogens. This new understanding should be capitalised 
on, and the capabilities established during the COVID-19 
pandemic should be expanded to AMR surveillance. 
Identifying and developing suitable case studies that show 
the benefits of genomics will help with advocacy efforts, 
but will also illustrate how AMR surveillance is more 
complex (eg, multipathogen and more dynamic) in nature 
than SARS-CoV-2, requiring more financial commitment 
and investment to develop and optimise methods.

Strengthening efforts to communicate the value of 
genomic surveillance among scientists in local, national, 
and regional laboratories, clinicians, and infection 
prevention and control teams should be prioritised by 
health organisations so that genomic outputs are used to 
their maximum benefit. Furthermore, reporting formats 
should be established to transform complex data into 
actionable information for public health practitioners, as 
has been achieved effectively for SARS-CoV-2 variants of 
concern.106 This improvement will help to guide decision 
making by integrating knowledge of the specific strain 
of pathogen behind an infection, the broader 
epidemiological context (eg, linkage to an outbreak), the 
likelihood for AMR transmissibility, and the selection 
pressure behind emergence.

Conclusions
The need for increased bioinformatic training and better 
interaction and communication to raise awareness of the 
benefits of genomic AMR surveillance among stakeholders 
were repeating themes in both workshops 1 and 2, which 
related primarily to AMR surveillance in human health 
(although many of the findings are equally relevant for 
animal and environmental AMR surveillance, which are 
covered in the fourth paper in this Series107). There is a 
clear need for further research and partnership among 
policy makers, health providers, and academics to 
harmonise the generation and interpretation of genomic 
data and to build and maintain standards. While 
implementation of genomic AMR surveillance in clinical 
settings will have its challenges, the knowledge exchange, 
cooperation, and trust required to facilitate buy-in for 
contributing and sharing data at a public health level will 
be much harder, meaning that establishing good 
relationships underpinned by strong governance and 
agreed goals will be essential for meaningful progress.
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