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Abstract 

Background Genomic data-based machine learning tools are promising for real-time surveillance activities perform-
ing source attribution of foodborne bacteria such as Listeria monocytogenes. Given the heterogeneity of machine 
learning practices, our aim was to identify those influencing the source prediction performance of the usual holdout 
method combined with the repeated k-fold cross-validation method.

Methods A large collection of 1 100 L. monocytogenes genomes with known sources was built according to several 
genomic metrics to ensure authenticity and completeness of genomic profiles. Based on these genomic profiles (i.e. 
7-locus alleles, core alleles, accessory genes, core SNPs and pan kmers), we developed a versatile workflow assessing 
prediction performance of different combinations of training dataset splitting (i.e. 50, 60, 70, 80 and 90%), data pre-
processing (i.e. with or without near-zero variance removal), and learning models (i.e. BLR, ERT, RF, SGB, SVM and XGB). 
The performance metrics included accuracy, Cohen’s kappa, F1-score, area under the curves from receiver operating 
characteristic curve, precision recall curve or precision recall gain curve, and execution time.

Results The testing average accuracies from accessory genes and pan kmers were significantly higher than accura-
cies from core alleles or SNPs. While the accuracies from 70 and 80% of training dataset splitting were not significantly 
different, those from 80% were significantly higher than the other tested proportions. The near-zero variance removal 
did not allow to produce results for 7-locus alleles, did not impact significantly the accuracy for core alleles, accessory 
genes and pan kmers, and decreased significantly accuracy for core SNPs. The SVM and XGB models did not present 
significant differences in accuracy between each other and reached significantly higher accuracies than BLR, SGB, ERT 
and RF, in this order of magnitude. However, the SVM model required more computing power than the XGB model, 
especially for high amount of descriptors such like core SNPs and pan kmers.

Conclusions In addition to recommendations about machine learning practices for L. monocytogenes source attri-
bution based on genomic data, the present study also provides a freely available workflow to solve other balanced 
or unbalanced multiclass phenotypes from binary and categorical genomic profiles of other microorganisms with-
out source code modifications.

*Correspondence:
Nicolas Radomski
n.radomski@izs.it
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12864-023-09667-w&domain=pdf
http://orcid.org/0000-0001-6518-1752
http://orcid.org/0000-0001-6836-3455
http://orcid.org/0000-0002-2083-5043
http://orcid.org/0000-0001-5633-3283
http://orcid.org/0000-0002-7547-1195
http://orcid.org/0000-0002-9328-3972
http://orcid.org/0000-0002-7480-4197


Page 2 of 19Castelli et al. BMC Genomics          (2023) 24:560 

Keywords Source attribution, Listeria monocytogenes, Machine learning, Genomic data

Introduction
The foodborne pathogen Listeria monocytogenes, respon-
sible for human listeriosis, has become a model in infec-
tion biology during the last decades and its infection 
process is today almost completely understood (i.e. 
encounter of the host intestinal epithelium after ingestion 
of contaminated food, crossing of intestinal epithelial 
barrier into the lamina propria, dissemination through 
the lymph and blood towards the liver and spleen) [1]. 
Depending on ingested L.  monocytogenes doses, immu-
nocompetent individuals may develop mild to severe gas-
tro-enteritis and people at risk (e.g. like children, elderly 
individuals, immunocompromised individuals and preg-
nant women) may suffer of bacterial sepsis, subsequent 
bacterial meningitis and/or infection of the fetus [2]. 
L.  monocytogenes is a Gram-positive rod-shaped bacte-
rium belonging to the genus Listeria encompassing 17 
other species and harbors 4 main evolutionary lineages, 
13 agglutination serotypes, 5 molecular serotypes, as well 
as several clonal complexes (CCs) and sequence types 
(STs) identified by multi-locus sequence typing (MLST) 
[3]. At the genomic scale, L.  monocytogenes is a clonal 
species [3] with a small chromosome (~ 3 Mbp) [4] and 
a low GC content (i.e. 37–38%) [4–6]. L. monocytogenes 
possesses between 2 330 and 2 456 core genes [7], as well 
as potentially several hundreds of accessory genes [4] 
harbored by plasmids [8] and phages [5] of various sizes.

The global public health burden of listeriosis was esti-
mated annually at thousands of deaths and tens of thou-
sands disability-adjusted life-years [9]. This public health 
burden is accompanied by a considerable economic cost, 
which for example has reached hundreds million Cana-
dian dollars for an outbreak related to contaminated 
delicatessen meat [10]. According to the European Union 
(EU) One Health 2021 Zoonoses Report, L.  monocy-
togenes infections were the fifth most reported zoonoses 
in humans in 2021 and part the most severe zoonotic 
diseases, with the most hospitalisations and highest case 
fatality rates [11]. Even if L.  monocytogenes may be iso-
lated from water and soils, foods are considered to be the 
major vehicle for listeriosis [12]. Indeed, this bacterium is 
frequently isolated in agricultural, aquacultural and food 
processing environments [12], especially in a vast vari-
ety of ready-to-eat (RTE) foods (i.e. handled, processed, 
mixed, cooked or prepared into edible forms without fur-
ther listericidal steps) [13], and may persist in food pro-
cessing plants thanks to potential genes responsible for 
resistance to chemical compounds and biocides used for 
food plant sanitation [5].

Because food origins of L.  monocytogenes outbreaks 
may be unidentified (e.g. patients who do not remem-
ber their diets the days before the first symptoms) or 
foodstuffs composed of food products from diverse 
food sectors (e.g. a salad of egg, ham and cheese) [14], 
and because L. monocytogenes may enter the food pro-
cessing environment through employee, equipment and 
raw material [12], the ability to attribute efficiently (i.e. 
accurately and fastly) food sources to isolates is of major 
importance for public health authorities which track 
origins of foodborne outbreaks (i.e. traceback investi-
gation) [14], and monitor L. monocytogenes in primary 
production, manufacturing and distribution (i.e. sur-
veillance activity) [11] to support policy-making.

The historical source attribution models, namely 
STRU CTU RE [15] (i.e. Bayesian clustering), modified 
Dutch [16] (i.e. frequency-matching) and Danish “Hald” 
[17] (i.e. frequency-matching) models, were mainly 
applied to Campylobacter and rarely to Salmonella and 
Listeria, and relied on microbial phenotypes (e.g. sero-
typing, phage-typing, antimicrobial resistance) or sub-
types (e.g. STs, MLST, core genome MLST (cgMLST), 
ribosomal MLST (rMLST) and variable number tan-
dem repeat analysis (VNTR)) [18–21]. The few studies 
using historical models to perform source attribution 
of L. monocytogenes, attributed human listerioris cases 
mainly to dairy products [19] or bovine reservoir [20, 
21], in agreement with the unique machine learning 
(ML)-based study about L. monocytogenes source attri-
bution (i.e. dairy products) [22].

Since the appearance of whole genome sequencing 
(WGS), ML models have recently been applied suc-
cessfully from genomic data during the last few years 
to perform source attribution of pathogenic foodborne 
bacteria such like L.  monocytogenes [22], S.  Typhimu-
rium [23, 24], Campylobacter jejuni and coli [25], as 
well as Escherichia coli [26]. Despite the improvements 
in ML-based procedures for source attribution of path-
ogenic foodborne bacteria, the recently developed ana-
lytical workflows still present several differences which 
remain to be harmonized, such as language-dependent 
libraries, genomic features of interest, splitting ratios 
between training and testing datasets, preprocessing 
steps, ML models and performance metrics [22–26]. 
Such harmonization of genomic-based ML settings and 
performance metrics would improve source attribution 
performance and allow direct comparisons of source 
attribution results from independent studies using 
common practices.
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The recently developed workflows using supervised ML 
models for source attribution of pathogenic foodborne 
bacteria are based on the caret R [22–24] or scikit-learn 
Python [25, 26] libraries. These R caret (classification 
and regression training) [27] and Python scikit-learn 
(machine learning built over SciPy) [28] libraries are pop-
ular in data mining and predictive analytics because they 
provide a large range of supervised and unsupervised 
algorithms. Both libraries provide functions to split data, 
preprocess data, set models, assess model performance 
and perform prediction [27, 28].

These recent ML-based workflows are usually imple-
mented from cgMLST [22, 23, 25] and less frequently 
from patterns of genes [24, 26] or kmers [25], because 
cgMLST typing is widely used in routine surveillance of 
foodborne pathogens and presents the advantage to har-
bor a constant small amount of labeled descriptors (i.e. 
the cgMLST loci) allowing easy inter-laboratory model 
exchanges [29]. While it is not the case for these recent 
ML-based workflows [22–26], the single nucleotide poly-
morphisms (SNPs) are also commonly used to build ML 
models for other scientific objectives [30].

Concerning the preprocessing steps before supervised 
ML training, these recent ML-based workflows do not 
perform preprocessing [24, 25], or perform a Boruta 
function-based reduction [23], genome wide association 
study (GWAS) [26], or removal of near-zero variance 
(NZV) descriptors [22]. The removal of NZV descriptors 
is largely used as a supervised ML-based preprocessing 
step because the exclusion of NZV descriptors from the 
ML model may provide benefits for models that are sus-
ceptible to this particular type of descriptors [31].

Comparing nine supervised ML models, a peculiar 
study assessing different input genomic features for 
source attribution of foodborne pathogens [25] demon-
strated that the workflows presenting the highest accura-
cies were in this order of importance: extreme gradient 
boosting (XGB) [32] from cgMLST, RF [33] from cgMLST 
and extremely randomized trees (ERT) [34] from kmers. 
Compared to cgMLST and kmers input, these authors 
also observed lower accuracies for ML models using 
alleles, sequences or kmers from 7-locus MLST [25]. The 
other supervised ML-based studies focusing on source 
attribution of foodborne pathogens from genomic data 
estimated that the highest accuracy was reached with 
the boosted logistic regression (a.k.a. Logit boost: BLR) 
model [35] from cgMLST, compared with RF [23], or 
compared with RF, support vector machine (SVM) [36] 
and stochastic gradient boosting (SGB) [22, 37], while 
another study [26] reached the highest accuracy with 
the SVM model from genes [36] compared with Gauss-
ian naive Bayes (GaussianNB) [38], decision trees (Dts) 
[39] and RF [33]. It must be noted that the SGB model 

[22] is an improvement of the generalized boosted model 
(GBM), and that the BLR [23] and multi-nomial logistic 
regression (MLR) [24] models are highly similar [40].

Among other possible methods for accuracy estimation 
of supervised ML models [41–44], the recent supervised 
ML-based workflows aiming at performing source attri-
bution based on genomic data [22–26] agree to perform 
a similar non-exhaustive cross-validation method which 
does not compute all ways of splitting the original data-
set of samples. More precisely, these studies combine 
one of the most primitive holdout method [22–26] with 
one of the two most advanced k-fold cross-validation: the 
non-repeated k-fold cross-validation [22, 23] or repeated 
(n = 10) k-fold cross-validation [24–26] methods. The 
holdout method aims at splitting randomly the original 
dataset of samples into training and testing datasets for 
ML model training and accuracy estimation, respectively 
[45]. The cross-validation method aims at splitting ran-
domly the original dataset into k equal sized groups of 
samples, k-1 groups to train the model and one group 
to validate it, then the process is reiterated until each 
unique group has been used to validate the model [46]. 
This combined strategy allows identification and mitiga-
tion of the ML model over-fitting [47, 48]. The ML model 
over-fitting appears when the model trains noise (i.e. ran-
dom pointless data) rather than only signal (i.e. useful 
data explaining the phenotype of interest), and is defined 
when a model matches well its training data (i.e. high 
accuracy and low error rate), while performing poorly in 
view of its validation or testing data (i.e. low accuracy and 
high error rate) [48]. The k-fold cross-validation is one of 
the most well-known methods to mitigate the over-fitting 
because it implies the selection of the best parameters 
during cross-validation and the use of these best param-
eters to train the retained model [47].

Concerning the holdout method [45], the propor-
tions of training samples are usually defined higher 
than the proportions of testing samples by authors of 
the most recent articles using supervised ML for source 
attribution of pathogenic foodborne bacteria based on 
genomic data (i.e. between 70/30% and 90/10% for the 
training/testing datasets) [22–26]. Authors consider 
actually the Pareto Principle stating that roughly 80% of 
effects come from 20% of causes [49–52], in agreement 
with a recent ML-based study proposing a possible sta-
tistical reason why a splitting ratio between 70/30% and 
80/20% (i.e. training/testing) provides empirically the 
highest prediction performance [53]. Nevertheless, the 
80–20 rule may no longer be the best practice for split-
ting of training and testing datasets because authors 
confirmed [54], or not [55–57], that the optimal split-
ting ratio is 70/30%. As regards the k-fold cross-vali-
dation method [46], these ML based studies for source 
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attribution of foodborne bacteria [22, 26] proposed to 
perform 10 [22, 26], 7 [23] or 5 [25] -fold cross-valida-
tions. While three of these four studies do not harmo-
nize the splitting ratios between the holdout and k-fold 
cross-validation methods [22, 23, 25], the other one 
keeps equal these splitting ratios for these two methods 
[26]. Indeed, the larger the training dataset of the k-fold 
cross-validation is, the longer the ML model computa-
tional time is, and even longer for the repeated k-fold 
cross-validation [46].

In addition to the usual accuracy estimation (i.e. cor-
rectly classified observations both positive and nega-
tive), recent studies using supervised ML for source 
attribution of foodborne bacteria based on genomic 
data [22–26], propose to use other class-dependent 
performance metrics, such like precision (i.e. propor-
tion of true positives among true and false positives) 
[58], recall (i.e. proportion of true positives among 
true positives and false negatives) [58], Cohen’s kappa 
(i.e. consistency across raters taking into account the 
agreement occurring by chance) [59] and F1-score (i.e. 
accuracy in terms of harmonic mean of precision and 
recall) [60]. One of these studies [26] propose also to 
use metrics from model scores to assess performance 
of supervised ML models through probabilistic frame-
work of area under the curve (AUC) [61] measuring the 
proportion of the entire two-dimensional area under-
neath the entire receiver operating characteristic curve 
(ROC) [62], precision recall curve (PR) [63] when the 
datasets are highly skewed [58, 64] or precision recall 
gain curve (PRG) [65] in the case of both weighted 
and unweighted datasets [66]. It must be noted that a 
calibration curve (CC) can also be used to assess ML 
model performance, even if it does not harbor associ-
ated AUC [67, 68].

In view of these most recent articles performing ML-
based source attribution of foodborne bacteria from 
genomic data [22–26] and with the ultimate goal to har-
monize ML practices for efficient source attribution of 
L. monocytogenes from genomic data, we built (i) a robust 
collection of samples and (ii) a versatile ML workflow, 
in order to compare (iii) performance metrics and (iv) 
unstandardized ML settings. The performance metrics 
included accuracy [22–26], Cohen’s kappa [69], F1-score 
[60], AUC [61] from ROC [62], PR [63] or PRG [65], and 
execution time, while the unstandardized ML settings 
included input genomic profiles (i.e. 7-locus alleles [25], 
core alleles [22, 23, 25], accessory genes [24, 26], core 
SNPs [30] and pan kmers [25]), dataset splitting (i.e. 50, 
60, 70, 80 and 90% of training dataset [52–55]), data pre-
processing (i.e. with or without NZV removal [22, 31]), 
and learning models (i.e. BLR [35], ERT [34], RF [70], 
SGB [37], SVM [36] and XGB [32]).

Results
The building of a robust collection of L.  monocytogenes 
paired-end reads [22] (i), together with the development 
of a versatile ML workflow based on practices in the field 
of foodborne bacteria source attribution from genomic 
data [22–26] (ii), allowed comparison of usual perfor-
mance metrics (iii) and unstandardized ML settings (iv), 
in order to harmonize ML practices for efficient source 
attribution of L. monocytogenes.

Robust collection of samples
The quality of a previously described collection of 
L.  monocytogenes samples [22] was assessed rigor-
ously in order to assure authenticity and completeness 
of genomic profiles used as input of the developed ML 
workflow (Additional file  1). The corresponding proce-
dure detailed in material and methods, retained 1  100 
paired-end reads in the final collection of food samples 
(Additional file  2). In agreement with others studies, 
these confirmed L.  monocytogenes samples [71] were 
defined by a low level of single nucleotide variants in the 
core single-copy ribosomal-protein genes (SNVs) [72, 
73] (i.e. 0.32 ± 0.79 SNVs), a high base calling quality (i.e. 
97.89 ± 1.31% of QC30) [74, 75], a high mapping cover-
age (i.e. 47.37 ± 5.98X and 99.3% of depth and breadth of 
coverage, respectively) [29], a low assembly fragmenta-
tion (i.e. 57 ± 66 contigs) [76], and an expected genome 
size (i.e. 2.96 ± 0.07 Mbp) [4, 8]. While significant differ-
ences (i.e. Kolmogorov–Smirnov tests) of quality met-
ric distributions (i.e. depth, breadth, contigs and size) 
were observed between phenotypes considering all CCs 
(Additional file  3), these differences were most of the 
time less significant considering the most prevalent CC5 
(Additional file  4). The distribution of food sources was 
balanced across the collection of samples, while the dis-
tribution of CCs was not uniform across food sources 
(Additional file  5). A small proportion of CCs/STs was 
slightly associated with food sources (Additional file  5) 
based on a Pearson’s Chi-squared test with Yates’ con-
tinuity correction (p = 4.00 ×  10–4) and multiple Chi-
squared tests with Bonferroni correction (i.e. 21% of 
CCs/STs with p < 4.00 ×  10–4, impacting 41% of samples). 
Food sources were scattered across the tree, while CCs/
STs were mostly clustered (Additional file 6). Finally, this 
final collection of samples allowed identification of 7 039 
pan genes (i.e. 2  472 core genes > 99% of samples and 
4  567 accessory genes ≤ 99% of samples), 130  663 core 
variants and 660 966 pan kmers.

Versatile ML workflow
The fully automatic versatile ML workflow is freely 
accessible in Docker for inter-laboratory exchanges and 
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was developed according to the common and unstand-
ardized practices (Fig. 1) described in recent studies pro-
posing source attribution based on genomic data and 
ML [22–26]. In addition to be able to answer research 
and surveillance activities, the developed ML workflow 
allows modification of input genomic profiles, dataset 
splitting, data preprocessing, and learning models which 

are assessed specifically in the present study (Fig. 1). This 
workflow produces usual performance metrics such like 
accuracy  [22–26], Cohen’s kappa [69], F1-score [60], 
AUC [61] from ROC [62], PR [63] or PRG [65], and exe-
cution time (Additional file 7). For advanced users, this 
versatile workflow allows also modification of other ML 
settings described in material and methods.

Fig. 1 Developed workflow aiming at performing supervised machine learning for source attribution based on genomic data. The developed 
workflow is based on R script for research and surveillance goals and is available in Docker
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Performance metrics
Depending on the model of interest, the average accu-
racy of the training dataset exhibited different levels 
of correlation with the average accuracy of the test-
ing dataset (Fig.  2), as well as the other performance 
metrics of interest (Additional file 8A-E). The average 
accuracy of the testing dataset presented also differ-
ent levels of correlation with the other performance 
metrics of interest (Additional file  8F-J). As a first 
noteworthy observation, the average accuracies of the 
training dataset were systematically higher than the 
corresponding average accuracies of the testing dataset 
(Fig.  2) and the same behavior was also observed for 
the other performance metrics of interest (Additional 
file  8). A second noticeable observation is that most 
of the average accuracies of the training dataset were 
very high and pretty constant for the SVM model (i.e. 
around 100%) (Fig. 2), while the corresponding average 
accuracies of the testing dataset were lower and more 
diverse (i.e. lower than around 80%) (Additional file 8). 
Because of these two last observations, unstandardized 
ML settings were compared below in view of the aver-
age accuracies of the testing dataset rather than train-
ing dataset.

Unstandardized ML settings
Outcomes of the 7-locus alleles were not included in the 
analyses of variance (ANOVA) below because all corre-
sponding performance metrics were very low (e.g. accu-
racy: 53.6%, CI95: 51.8–55.5) and NZV removal caused 
discarding of all descriptors (Additional file  9). Focus-
ing on the accuracy from the testing dataset, ANOVA 
showed that the average accuracy was not impacted by 
the NZV removal (p = 0.041) and significantly impacted 
by genomic profiles (p = 2.00 ×  10–16), ML models 
(p = 2.00 ×  10–16) and splitting (p = 7.45 ×  10–10), in this 
order of importance. The accuracies ranked in this order 
of importance: accessory genes (68.8%, CI95: 67.7–
70.0), pan kmers (67.3%, CI95: 65.7–68.8), core alleles 
(65.7%, CI95: 63.3–68.1) and core SNPs (59.9%, CI95: 
57.5–62.4). Based on Tukey multiple comparisons, the 
accuracy observed between pan kmers and core alleles 
(p = 0.333), or pan kmers and accessory genes (p = 0.353) 
were not significantly different, while the other pairwise 
comparisons of genomic features presented significant 
differences of accuracy (5.47 ×  10–3 < p < 1.00 ×  10–8). 
Interestingly, the ERT and RF models did not perform 
well for the core alleles and SNPs in comparison with 
accessory genes and pan kmers (Additional files 8 and 9). 

Fig. 2 Correlations between the average accuracy of the testing dataset and average accuracy of the training dataset from different machine 
learning models. BLR, ERT, RF, SGB, SVM and XGB stand for boosted logistic regression, extremely randomized trees, random forest, stochastic 
gradient boosting, support vector machine and extreme gradient boosting, respectively
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For each ML model of each genomic profile, the accu-
racy and training dataset splitting presented a tendency 
to increase gradually, reaching most of the time the high-
est accuracy for 80% of training dataset splitting (Addi-
tional file  9). Tukey multiple comparisons confirmed 
that the accuracies from 80% of training dataset splitting 
(67.6%, CI95: 65.1–70.1) were significantly higher that 
those from 50% (p = 1.00 ×  10–8, 60.5%, CI95: 58.4–62.5), 
60% (p = 6.15 ×  10–3, 64.3%, CI95: 62.2–66.4) and 90% 
(p = 1.38 ×  10–4, 62.8%, CI95: 59.9–65.6) of training split-
ting ratios. In contrast, these accuracies from 80% of 
training dataset splitting (67.6%, CI95: 65.1–70.1) were 
not significantly different than those from 70% of training 
dataset splitting (p = 0.158, 65.4%, CI95: 63.4–67.5). Even 
if ANOVA showed that the accuracies with (64.7%, CI95: 
63.3–66.2) and without (63.6%, CI95: 62.1–65.2) NZV 
removal were not statistically different (p = 0.041), those 
from core SNPs appeared significantly (p = 3.98 ×  10–5) 
lower for NZV removal (57.7%, CI95: 55.1–60.3) com-
pared with the absence of preprocessing (62.1%, CI95: 
57.9–66.4), while the NZV removal did not seem to 
impact accuracy for core alleles (p = 0.583), accessory 
genes (p = 0.982) and pan kmers (p = 0.020) (Fig. 3). The 
ML model accuracies ranked in this order of impor-
tance: SVM (71.2%, CI95: 69.0–73.3), XGB (67.8%, CI95: 
65.6–70.0), BLR (64.7%, CI95: 63.0–66.4), SGB (64.0%, 
CI95: 62.1–65.9), ERT (60.7%, CI95: 58.1–63.3) and RF 
(56.4%, CI95: 53.6–59.2). Tukey multiple comparisons 
did not show significant differences of accuracy between 
the BLR and SGB (p = 0.999), BLR and ERT (p = 0.017) or 
SVM and XGB (p = 0.051), while significant differences 
were observed for the other pairwise investigated models 
(6.79 ×  10–3 < p < 1.00 ×  10–8). All these statistically sup-
ported behaviors of accuracies were also graphically con-
firmed based on the other assessed performance metrics 
(Additional file 9). Furthermore, the analyses performed 
with the genomic profiles harboring the highest amount 
of descriptors, namely core SNPs and pan kmers, were 
the most time-consuming, especially for the RF and 
SVM models and the high training dataset splittings 
(Additional file  9). Finally, our recommendations about 
ML settings presented similar phenotype class-depend-
ent metrics for 7-locus alleles (Additional file 10A), core 
alleles (Additional file 10B), accessory genes (Additional 
file 10C), core SNPs (Additional file 10D) and pan kmers 
(Additional file  10E). Furthermore, additional analyses 
showed that class-dependent accuracies from core SNPs 
(i.e. 84.9%, CI95: 79.6–90.2) were not significantly dif-
ferent (Wilcoxon signed-rank test: p = 0.294) than those 
from only non-synonymous core SNPs (i.e. 85.9%, CI95: 
80.6–91.1) based on ML settings recommended in the 
present study (Additional file 10).

Discussion
A robust collection of L.  monocytogenes samples 
(Additional files 1 and 2) [22], together with the devel-
opment of a versatile ML workflow based on recently 
proposed ML-based methods for source attribution 
from genomic data (Table  1) [22–26], allowed assess-
ment of unstandardized settings (i.e. genomic profiles 
[22–26, 30, 77–79], dataset splitting [52–55], data 
preprocessing [22, 31, 80–82] and learning models 
[32, 34–37, 70]) of the common holdout method [45] 
combined with the repeated k-fold cross-validation 
method [83–85], in view of usual performance metrics 
(i.e. accuracy [22–26], Cohen’s kappa [69], F1-score 
[60], AUC [61] from ROC [62], PR [63] or PRG [65], 
and execution time).

Robust collection of samples
Special attention has been given to preparation of the col-
lection of samples (Additional files 1 and 2) in order to 
include uncontaminated draft genomes (i.e. 0.32 ± 0.79) 
presenting high levels of Phred scores (i.e. 97.89 ± 1.31% 
of QC30), mapping (i.e. depth: 47.37 ± 5.98X and breadth: 
92.36 ± 2.81%) and de novo assembly (i.e. number of con-
tigs: 57 ± 66 and total size: 2.96 ± 0.07 Mbp) (Additional files 
3 and 4). These levels of SNVs [29, 72, 86, 87], Phred scores 
[29, 74, 75], depth and breadth of coverage [29], number of 
contigs [76, 87, 88] and total size [4, 8, 87] were very similar 
to those described in the literature and supported authen-
ticity and completeness of genomic profiles. In addition, 
the amount of core genes (i.e. 2 472 core genes) was similar 
to those previously described (i.e. 2 330 to 2 456 core genes 
[7]). Due to the higher genetic diversity assessed in the pre-
sent study, the amount of accessory genes (i.e. 4 567 acces-
sory genes) was higher than those previously described (i.e. 
323 to 753 accessory genes [89]), as expected in view of our 
objective aiming at maximizing the amount of descriptors 
used to build ML models. A small proportion of CCs/STs 
was slightly associated with food sources (Additional files 5 
and 6) in agreement with a recent study [90]. Consequently, 
the consideration as descriptors of CCs/STs may lightly 
contribute to ML performance improvement, if these 
MLST-derived CCs/STs are not already encoded indirectly 
into genomic data of interest (e.g. MLST, cgMLST, core 
SNPs, pan kmers and potentially accessory genes). The per-
formance metrics (Additional files 7, 8, and 9, Figs. 2 and 3) 
confirmed that this collection of L. monocytogenes, present-
ing balanced phenotypes and non-uniform distribution of 
CCs across phenotypes (Additional files 5 and 6), is suitable 
to perform ML-based source attribution from genomic 
data as initially demonstrated based on cgMLST profiles by 
Tanui et al. [22].



Page 8 of 19Castelli et al. BMC Genomics          (2023) 24:560 

Versatile ML workflow
The developed ML workflow is versatile for several rea-
sons. Firstly, it answers research (i.e. known phenotypes 
from the testing dataset) and surveillance activities 
(i.e. unknown phenotypes from the testing dataset) [91]. 

Easily installable in different operating system through 
the related publicly available Docker container [92], 
this workflow gives also the opportunity to the users to 
modify input genomic profiles [22–26, 30, 77–79], data-
set splitting [52–55], data preprocessing [22, 31, 80–82], 

Fig. 3 Average accuracy (i.e. top) and 95% confidence intervals (i.e. bottom) from the testing dataset (%) from different combinations of genomic 
profiles (i.e. 7-locus alleles, core alleles, accessory genes, core SNPs and pan kmers), dataset splitting (i.e. 50, 60, 70, 80 and 90% of training dataset), 
data preprocessing (i.e. with or without near-zero variance removal), and machine learning models. The splitting ratios of the holdout (50/50%, 
60/40%, 70/30%, 80/20% and 90/10% for the training/testing datasets) and repeated k-fold cross-validation (k = 2.0, 2.5, 3.3, 5.0 and 10, respectively) 
methods were harmonized. BLR, ERT, RF, SGB, SVM and XGB stand for boosted logistic regression, extremely randomized trees, random forest, 
stochastic gradient boosting, support vector machine and extreme gradient boosting, respectively



Page 9 of 19Castelli et al. BMC Genomics          (2023) 24:560  

learning models [32, 34–37, 70], as well as settings of 
NZV, resampling and main tuning parameter range [27]. 
Compatible with binary (e.g. accessory genes and pan 
kmers) or categorical (e.g. 7-locus alleles, core alleles and 
core SNPs) genomic profiles of bacteria or virus, as well as 
any kind of binary (e.g. resistant or sensitive to a chemi-
cal) or multiclass (e.g. food sources) phenotypes, this ML 
workflow can be used in many fields such as pathogen 
control, genome engineering or synthetic biology [93]. 
The current version of the developed ML workflow does 
not provide ready-to-use trained models in order to give 
the opportunity to users to train models by themselves 
because successful ML analyses are often guided by the 
quality and quantity of descriptors [94].

Performance metrics
The tested performance metrics were not systematically 
correlated (Fig. 2 and Additional file 8) because they are 
designed to assess specific performance elements, mak-
ing them suitable for their own purposes. In addition, the 
fact that the performance metrics of the training dataset 
were systematically higher than those of the testing data-
set for all considered models (Fig. 2 and Additional files 
7 and 8), might signify that ML models over-fit to some 
extent, and/or that the collection of L.  monocytogenes 
did not reach the optimal size representing the whole 
genetic diversity. An objective way to assess over-fitting 
only from the training model, such like the ML learning 

curves [95], should consequently be implemented in 
future versions of the developed versatile ML workflow, 
and this workflow should also be used to process more 
L. monocytogenes genomes [86].

Unstandardized ML settings
The observation that the accuracies from accessory 
genes and pan kmers were significantly higher than those 
from core alleles and core SNPs, respectively (Fig. 3 and 
Additional file 9) may be explained by the fact that muta-
tions associated to food sources are mainly observed in 
the accessory genome rather than the core genome, as 
previously demonstrated concerning the adaptation 
of L.  monocytogenes to biocides used in food process-
ing plants [96] or the adaptation of Salmonella to ani-
mal hosts [97]. According to Arning et al. [25], we also 
observed poor performance metrics from 7-locus MLST 
in comparison to core alleles, accessory genes, core 
SNPs and pan kmers (Fig.  3 and Additional file  9). In 
agreement with the Pareto Principle stating that roughly 
80% of effects come from 20% of causes [52], as well as 
the recent ML-based study of Gholamy et  al. propos-
ing a possible statistical explanation about the optimal 
training dataset splitting between 70 and 80% [53], we 
observed independently of the considered genomic pro-
files and ML models that the accuracies from 70 and 80% 
of training dataset splitting were not significantly differ-
ent, while the accuracies from 80% of training dataset 

Table 1 Most recent articles using supervised machine learning for source attribution of foodborne bacteria based on genomic data. 
cgMSLT stands for coregenome multilocus sequence typing. ROC and AUC stand for receiver operating characteristic curve and area 
under the curve

Genus (samples) Input Holdout method 
(training & testing 
datasets %)

Preprocessing Cross-validation 
method (setting)

Models Additional 
performance 
metrics

Library Reference

Listeria (1 366) cgMLST Yes (70/30) near-zero variance repeated k-fold 
cross-validation 
(tenfold, 10-times)

random for-
est + logit 
boost + stochastic 
gradient boost-
ing + support vector 
machine

N/A R caret [22]

Salmonella (351) cgMLST Yes (70/30) Boruta function-
based reduction

repeated k-fold 
cross-validation 
(sevenfold, 
10-times)

random for-
est + logit boost

N/A R caret [23]

Salmonella (98) genes Yes (70/30) no preprocessing cross-validation 
(unknown)

multinomial logistic 
regression

N/A R caret [24]

Campylobacter 
(5 799)

cgMLST + kmers Yes (75/25) no preprocessing k-fold cross-vali-
dation (fivefold, 
1-time)

XGBoost harboring 
a higher accuracy 
than 8 other ML 
models

N/A Python scikit-
learn

[25]

Escherichia (3 000) genes Yes (90/10) GWAS k-fold cross-val-
idation (tenfold, 
1-time)

Gaussian naive 
Bayes + decision 
trees + random for-
est + support vector 
machine

ROC 
curve + AUC 
score

Python scikit-
learn

[26]
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splitting were significantly higher than those from 50%, 
60% and 90% of training dataset splitting (Fig.  3 and 
Additional file  9). The NZV removal did not provide 
results for 7-locus alleles, did not impact significantly the 
accuracy for core alleles, accessory genes and pan kmers, 
decreased significantly accuracy for core SNPs (Fig.  3), 
decreased the amount of descriptors used to build mod-
els (Additional file 7), and decreased slightly the execu-
tion time (Additional file 9). As expected [31], the NZV 
removal appeared to be advantageous to decrease the 
amount of descriptors, circumvent the library-depend-
ent limits related to long vectors and avoid negative 
impact on accuracy [27, 98]. Even if the SVM [36] and 
XGB [32] models did not present significant differences 
of accuracy and reached significantly higher accuracy 
than BLR [35], SGB [37], ERT [34] and RF [70] in this 
order of magnitude (Fig.  3), the SVM model popular-
ized in the early 2000s required much more computing 
power than the recently popularized XGB model, espe-
cially for high amount of descriptors such like core SNPs 
and pan kmers (Additional file 9).

Perspectives
In addition to recently proposed ML-based methods 
for source attribution from genomic data (Table  1) 
[22–26], other genomic data based-ML workflows 
for source attribution have been published during the 
acquisition of the present results (Fig. 3 and Additional 
files 7 and 9), for instance through an ultra-fast hier-
archical machine learning (hML) classifier from reads’ 
kmers of Salmonella (preprint [99] and published 
[100]), a neighbour group classifier from 7-locus MLST 
profiles of Campylobacter jejuni (preprint [101]), and 
a cgMLST-based classifier from cgMLST profiles of 
Legionella pneumophila (preprint [102]). A continuous 
comparison of new ML workflows (i.e. performance 
metrics and ML settings) is consequently necessary to 
harmonize practices in the field of genomic data-based 
ML for source attribution. To face the rare unstandard-
ized studies about L. monocytogenes source attribution 
making difficult to compare source attribution results 
from these independent studies [19–22], the perfor-
mance of the ML-based source attribution workflow 
standardized in the present study [22–26] and histori-
cal source attribution models [19–21] should be com-
pared in a near future. With the objective to process 
more genomic profiles through the developed ML 
workflow, we plan to investigate the intrinsic limit of 
the “train” function from the caret R library (version 
6.0–94) [27] which does not support long vectors 
in contrast with other libraries [98], as well as other 
pre-processing steps dealing with descriptors related 

to bacterial population structure [103], such like col-
lapsing of correlated descriptors [104] and removal of 
descriptors less relevant than random probes through 
the Boruta algorithm [105, 106]. As very recently pro-
posed by other authors using genomic data to predict 
eae-positive Shiga toxin-producing Escherichia coli 
[107], we also plan to implement ready-to-use trained 
ML models into future versions of the presented ML 
workflow in order to speed up the real-time predic-
tion of phenotypes for the surveillance activity [91]. 
Furthermore, we also plan to implement an automatic 
selection of the most efficient model before ML pre-
diction as very recently proposed by other authors 
using genomic data to predict antimicrobial resist-
ance of Streptococcus pneumoniae [106]. It would also 
be interesting to implement highly recognized model 
interpretation analyses, such like permutation variable 
importance [108] and/or shapley additive explanations 
[109], in order to assess importance of descriptors. 
Future comparisons of genomic data-based ML work-
flows with minimal multi-locus distance methodol-
ogy (MMD) may also participate to the improvement 
of source attribution of pathogenic microorganisms 
[110].

Conclusion
The present study confirmed that source attribution of 
L.  monocytogenes can be performed through genomic 
data-based ML and provided recommendations about 
unstandardized ML settings including genomic pro-
files, dataset splitting, data preprocessing and learning 
models for the common holdout method combined 
with the repeated k-fold cross-validation method. More 
precisely, we recommend to use preferably genomic 
profiles from accessory or pan genomes rather than 
core genome, a training dataset splitting between 70 
and 80%, and the XGB or SVM models, requiring mod-
est and large computing facilities, respectively. The 
critical confrontation of past and newly developed ML 
workflows will continue to harmonize analytical proce-
dures and provide good practices in the field of source 
attribution of pathogenic microorganisms for outbreak 
investigations and surveillance activities.

Material and methods
A robust collection of L.  monocytogenes paired-end 
reads presenting associated food source and the devel-
opment of a versatile ML workflow fitting the research 
and surveillance activities, made it possible to provide 
recommendations about the most efficient ML work-
flow settings based on several performance metrics.
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Collection of paired-end reads
Based on 1 365 sample accessions (SAMN) of L. mono-
cytogenes previously published in several BioProjects 
[22], SAMN and sequencing run accessions (SRR) 
were associated based on the European Nucleotide 
Archive (ENA) metadata, then a total of 1  421 reads 
available in the ENA were downloaded through wget 
commands. As detailed below, samples were dis-
carded from the original collection due to filtering 
steps related to archive metadata, as well as metrics 
associated to paired-end read, reference mapping and 
de novo assembly. Concerning the archive metadata, 
we discarded 55 single reads and technical sequenc-
ing replicates (i.e. multiple SRR IDs for the same sam-
ple), 28 erroneous biological replicates (i.e. identical 
SRR IDs for multiple SAMN IDs), 3 unavailable reads 
in ENA and 133 clinical samples because the present 
study focuses on source attribution performance (i.e. 
food sources). With regard to the paired-end read 
metrics, initial reads downsampling was performed at 
40X of read depth of coverage with BBNorm (version 
October 19, 2017) [111], as recently proposed for pre-
cise cgMLST typing of L. monocytogenes [29]. From this 
collection of 1  202 samples, 16 paired-end reads were 
discarded because they were contaminated by exog-
enous DNA (i.e. lower than 10 single nucleotide vari-
ants (SNVs) [72]), according to ConFindr (version 0.7.4) 
outcomes [73]. After a control of the expected species 
with Kraken (version 1.0) [71], 13 additional paired-and 
reads were discarded because they harbored less than 
90% Phred scores higher than QC30 (quality control), 
according to FastQC (version 0.11.5) outcomes [112] 
and in agreement with a previous assessment of param-
eters required for precise cgMLST typing [29]. In view 
of mapping metrics, 32 samples with depth of coverage 
values below 35X and 27 samples with breadth of cov-
erage values below 85% were rejected. The read depth 
of coverage was measured with BBmap (February 13, 
2020) [111] against the L. monocytogenes EGD-e refer-
ence genome (i.e. NC_003210.1) [113]. Concerning the 
assembly metrics, 14 samples with more than 400 total 
contigs were discarded and the genome sizes were con-
trolled (i.e. < 3.5  Mbp). The final collection of samples 
was constituted of 1  100 paired-end reads (Additional 
file 1).

De novo assembly
As previously described [29], genome assembly was per-
formed from downsampled paired-end reads with the in-
house NGSmanager de novo assembly pipeline from the 
GENPAT information system implemented in IZSAM. 
Briefly, the NGSmanager assembly pipeline performed 
read trimming with Trimmomatic (version 0.36; clipping 

2:30:10; leading 25; trailing 25 sliding window 20:25 mini-
mal length 36) [114], de novo assembly with SPAdes (ver-
sion 3.11.1; only assembler; careful; -k 21, 33, 55 and 77) 
[115], and filtering of contigs lower than 200  bp with a 
custom Python script AssemblyFilter.py (i.e. version 
2.7.8). The assembly quality was assessed with Quast 
(version 4.4) [116] and the assembly annotation was 
performed with Prokka (version 1.14.5) [117]. Indepen-
dently of the NGSmanager de novo assembly pipeline, the 
assembly metrics were compiled through the Bourne-
Again shell (a.k.a. bash) interpreter [118].

Genomic features of interest
The present study aims at evaluating suitable settings of 
ML workflow according to usual input genomic features 
including 7-locus alleles, core alleles, accessory genes, 
core SNPs and pan kmers. The accessory genes and pan 
kmers were encoded through binary profiles, while the 
7-locus alleles, as well as core alleles and SNPs, were 
encoded through categorical profiles. The format of these 
genomic features were harmonized through the bash 
interpreter [118] in agreement with the usual tsv format 
(i.e. genomic features in lines and samples in columns 
[119, 120]).

7‑locus alleles
CCs and STs were identified from draft assemblies with 
MLST (version 2.16.1) [121]. The 7-locus alleles were 
retrieved and compiled through the bash interpreter 
[118]. The novel full length allele similar to a “n” known 
allele (i.e. encoded “ ~ n”) and partial match to a “n” 
known allele (i.e. encoded “n?”) were considered as non-
determined (ND) alleles in the present study.

Core alleles
cgMLST allele profiles were identified from draft assem-
blies with chewBBACA (version 2.6.0) [122] as described 
by the cross-sectoral platform for the integration of 
genomics in the surveillance of foodborne pathogens 
(INNUENDO) [123]. More precisely, default settings 
of chewBBACA (including allele size threshold = 0.2, 
BLASTP score ratio ≥ 0.6 and the recommended prodigal 
training file Listeria_monocytogenes.trn: https:// chewb 
baca. online/ stats [124]) were applied in the present study. 
The exact matches with alleles from the schema (encoded 
EXC), new inferred allele (INF), locus not found (LNF), 
possible locus on the tip of contigs (PLOT), alleles larger 
(ALM) and smaller (ASM) than mode were considered 
in the present study, while non-informative paralo-
gous hits (NIPH) and non-informative paralogous exact 
match (NIPHEM) were considered as missing data. The 
profiles of cgMLST alleles were identified based on the 
L.  monocytogenes schema of 1  748 cgMLST loci [125] 

https://chewbbaca.online/stats
https://chewbbaca.online/stats
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downloaded from BIGSdb-Lm [125, 126] as recently 
described [29]. The cgMLST format was transformed 
and transposed into the expected input ML format (i.e. 
genomic features in lines and samples in columns) with 
the bash interpreter [118].

Accessory genes
The pangenomic genes including core and accessory 
genes were extracted from annotation output of draft 
assemblies with Panaroo (version 1.2.3) [119] through 
strict mode (i.e. genes present in at least 5% of genomes), 
excluding invalid genes (i.e. premature stop codons), 
using default threshold defining homologous genes (i.e. 
95% of sequence identity, 70% of protein family sequence 
identity, and 98% of length difference) and merging par-
alogous genes.

Core SNPs
Also implemented into our GENPAT information sys-
tem, variants including SNPs and small insertions/dele-
tions (InDels) were identified from paired-end reads (i.e. 
downsampled and trimmed) with the Snippy pipeline 
(version 4.5.1) [127] presenting a strong and uniform 
performance across species [128] based on BWA-based 
mapping [129] and FreeBayes-based variant calling 
[130]. The Snippy pipeline (i.e. single-sample dependent 
vcf files) performed mapping, variant calling and vari-
ant annotation against the annotated L.  monocytogenes 
EGD-e reference genome (i.e. NC_003210.1) [113]. The 
Snippy-core pipeline (i.e. multi-samples dependent vcf 
file) retained only core SNPs [127]. The vcf format was 
transformed and transposed into the expected input ML 
format (i.e. genomic features in lines and samples in col-
umns) with the bash interpreter [118].

Pan kmers
The kmtricks program was used from paired-end reads 
(i.e. downsampled and trimmed) to generate presence/
absence profiles of kmers representing non-erroneous 
kmers from each paired-end reads (i.e. low abundance) 
and avoiding rare kmers, useless in a ML context (i.e. low 
recurrence) [131]. Firstly, the kmtricks module named 
“pipeline” produced partitions of kmers based on kmer 
size of 100 bases (i.e. “kmer-size” argument), low abun-
dance of 10 kmers per single sample (i.e. “hard-min” argu-
ment), low recurrence of 20 kmers across samples (i.e. 
“recurrence-min” argument), random sub-selection of 5% 
(i.e. “restrict-to” argument), matrix mode of kmer pres-
ence/absence profiles into bin output (i.e. “kmer:pa:bin” 
string of the “mode” argument) and compression of tem-
porary files (i.e. “cpr” argument). Secondly, the kmtricks 
module named “aggregate” aggregated partitions of 
kmers based on presence/absence profiles of kmers (i.e. 

“kmer” string of the “pa-matrix” argument) and gener-
ated human readable format of kmer profiles (i.e. “text” 
string of the “format” argument) from compressed inputs 
(i.e. “cpr-in” argument). The sample identifiers were 
added to the dataframe of presence/absence profiles of 
accessory kmers with the bash interpreter [118] following 
the order of sample identifiers provided by the kmtricks 
input file [131].

Machine learning workflow
The “GenomicBasedMachineLearning.R” workflow (ver-
sion 1.0) was developed to fit requirements of L. mono-
cytogenes source attribution for research or surveillance 
goals described below (Fig. 1). Due the intrinsic limit of 
the “train” function from the caret R library (version 6.0–
94) [27] which does not support long vectors yet [98], 
randomly selections of SNPs and kmers were performed 
through the bash interpreter (i.e. the “shuf” function) 
[118] and this limit has been estimated around 46 thou-
sand descriptors for the present study.

Mandatory goals and input files
For reasons of usage simplicity, the developed ML work-
flow requires a goal, an input file encoding binary (e.g. 
accessory genes and pan kmers) or categorical (e.g. 
7-locus alleles, core alleles and core SNPs) genomic pro-
files (i.e. “mutations” argument) in tab-separated values 
format (i.e. Roary [120] or Panaroo-like [119] output 
file with genomic features in lines and samples in col-
umns), and an input tsv file encoding phenotypes (i.e. 
“phenotype” argument). More precisely, the goals fit 
research or surveillance activities, because the workflow 
can estimate training model accuracy through holdout 
[45] and repeated k-fold cross-validation [46] methods 
and perform prediction if testing phenotypes are known 
(i.e. “research” string of the “goal” argument), or if test-
ing phenotypes are unknown (i.e. “surveillance” string 
of the “goal” argument). The double check of accuracy 
(i.e. from the training and testing datasets) allows to set 
properly the ML workflow during research activity, and 
then perform phenotype prediction of unknown tested 
samples with a single step of accuracy checking during 
surveillance activity (i.e. from the training dataset). Fur-
thermore, we decided to use a tsv file of input genomic 
profiles because it fits well the usual encoding of vari-
ants, genes and kmers (i.e. genotype in rows and samples 
in columns), and also because it is simple to derive a vcf 
file of core SNPs [132] into a tsv file of alternative variant 
profiles through the most popular interpreter bash [118].

Data management
The workflow was developed with the R language (ver-
sion 4.3.0) [133] and RStudio integrated development 
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environment (version 2022.02.3, build 492) [134] through 
the Ubuntu 20.04.5 LTS (Focal Fossa) distribution. The 
versions of R libraries were controlled with the remote 
R library (version 2.4.2). The container image of this 
R-based workflow was built from a Rocker image man-
aging the R version (https:// rocker- proje ct. org/ images/ 
versi oned/r- ver. html) through the Docker platform (ver-
sion 20.10.22, build 3a2c30b) [92]. The workflow argu-
ments were managed with the optparse R library inspired 
by Python optparse library (version 1.7.3). The available 
central processing unit (CPUs) and parallel job process-
ing were managed by default with the benchmarkme 
(version 1.0.8) and doParallel (version 1.0.17) [135–137] 
R libraries, respectively. It must be noted that the libssl-
dev and libcurl4-openssl-dev libraries were installed into 
the Ubuntu 20.04.5 LTS (Focal Fossa) distribution in 
order to install properly the benchmarkme (version 1.0.8) 
R library. The user can also specify the number of CPUs 
to use (i.e. “cpu” argument). The reading and manipula-
tion of dataframes were performed with the data.table 
(version 1.14.8) and dplyr (version 1.1.2) R libraries. The 
descriptors containing potential missing data (encoded 
as absence of string) were discarded systematically with 
the base R library (version 4.3.0) [133]. The descriptors 
harboring potential constant values (e.g. core genes from 
Panaroo [119]) were discarded with the janitor R library 
(version 2.2.0).

Holdout method
According to the Pareto Principle (a.k.a. the 80–20 rule 
[49])  and  results of the present study, we implemented 
per default 80/20% (i.e. training/testing datasets) of ran-
domized and stratified splitting through the “create-
DataPartition” function of the caret R library (version 
6.0–94) [27] (i.e. “random” string of the “dataset” argu-
ment). Because this optimal ratio of the holdout method 
may be dependent on the selected model [56] and dataset 
size [57], we implemented an optional argument into the 
ML workflow to control this dataset splitting (i.e. “split-
ting” argument) in order to allow testing of different 
splitting ratios (i.e. training/testing datasets). If necessary 
during research activity aiming at defining stability of 
prediction performance according to controlled datasets, 
the user can also define himself the training and testing 
samples into the mandatory tsv input file dedicated to 
phenotypes and dataset labeling (i.e. “manual” string of 
the “dataset” argument).

Descriptor preprocessing
The highly used method removing NZV descriptors [22, 
31] was implemented into the developed ML workflow 
(i.e. “variances” argument) from training samples and 
through the “nearZeroVar” function of the caret R library 

(version 6.0–94) [27]. This “nearZeroVar” function of 
the caret R library allows removal of NZV descriptors 
presenting a high fraction of unique values over the 
sample size (i.e. “uniqueCut” argument) and a low ratio 
between the frequency of the most prevalent value and 
the frequency of the second most prevalent value (i.e. 
“freqCut” argument) [27]. The present study used the 
default values of the “uniqueCut” (i.e. 10) and “freqCut” 
(i.e. 19) arguments of the “nearZeroVar” function and 
we decided to implement these two thresholds as argu-
ments of the developed ML workflow because users may 
wish to modify the “uniqueCut” (i.e. “unique” argument) 
and “freqCut” (i.e. “ratio” argument) arguments due to 
the fact that the number of NZV descriptors depend on 
the dataset size [31]. Because one of our main objectives 
was to perform ML from binary (e.g. accessory genes and 
pan kmers) or categorical (e.g. 7-locus alleles, core alleles 
and core SNPs) genomic profiles, we decided to consider 
all these descriptors as categorical variables and refrain 
from implementing typical preprocessing steps intended 
for numerical descriptors, namely removal of highly cor-
related descriptors and descriptor transformations (e.g. 
centering, scaling, BoxCox, YeoJohnson, exponential and 
principal component analysis) with the “findCorrelation” 
and “preProcess” functions of the caret R library, respec-
tively [27].

Non‑exhaustive cross‑validation method
According to the recent supervised ML-based work-
flows aiming at performing source attribution based on 
genomic data [22–26], the holdout method [45] com-
bined with repeated k-fold cross-validation method [46] 
were implemented into the workflow developed in the 
present study. According to the Pareto Principle (a.k.a. 
the 80–20 rule [49]) and results of the present study, the 
fivefold cross-validation method was implemented per 
default into the developed workflow through the “train-
Control” function of the caret R library (version 6.0–94) 
[27]. We also implemented an optional argument into the 
ML workflow to control the k-fold cross-validation (i.e. 
“fold” argument) in order to allow testing of different k 
[22–26]. According to Im et al. (2022) about the judicious 
adjustment of splittings from the holdout and repeated 
k-fold cross-validation methods [26], the present study 
tested several splitting ratios harmonizing those from the 
holdout (50/50%, 60/40%, 70/30%, 80/20% and 90/10% 
for the training/testing datasets) [45] and repeated k-fold 
cross-validation (k = 2.0, 2.5, 3.3, 5.0 and 10, respectively) 
methods [46]. According to Tanui et  al. (2022) [22] and 
Munck et al. (2020) [23] about the advantage to perform 
repeated k-fold cross-validations, the developed ML 
workflow implement 10 repetitions per default of the 
k-fold cross-validation method [22, 23]. In case of user 

https://rocker-project.org/images/versioned/r-ver.html
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needs, the number of repetitions was also implemented 
as an argument of the developed ML workflow (i.e. “rep-
etition” argument).

ML models
The developed ML workflow implements the ML models 
(i.e. “fit” argument) presenting the highest performances 
among ML models tested by the most recent studies aim-
ing at performing source attribution of foodborne bac-
teria based on genomic data [22–26], namely BLR [22, 
23] (similar to MLR [24]), ERT [25], RF [25], SGB [22], 
SVM [26] and XGB [25]. These ML models were imple-
mented into the workflow through an optional argu-
ment (XGB per default) based on the “train” function of 
the caret R library (version 6.0–94) [27]. The setting of 
this “train” function implied the ROC metric from the 
MLmetrics R library (version 1.1.1). While the SVM [36] 
and BLR [35] models were implemented through the 
caret R library (version 6.0–94) [27], the RF [70], SGB 
[37], ERT [34] and XGB [32] models were implemented 
through the randomForest (version 4.7–1.1), gbm (ver-
sion 2.1.8.1), ranger (version 0.15.1) [138] and xgboost 
(version 1.7.5.1) R libraries, respectively. Indeed, the 
deprecated extraTrees R library (2022–06-14) was not 
used in the present study to implement the ERT model 
[34], because check problems were not corrected by the 
authors despite reminders from the comprehensive R 
archive network (CRAN). For each of the implemented 
model, the “expand.grid” function of the caret R library 
(version 6.0–94) [27] was used in the present study based 
on main tuning parameters from 1 to 10 by 1 by default 
(i.e. arguments “nIter” for BLR, “mtry” for ERT, “mtry” 
for RF, “interaction.depth” for SGB, “cost” for SVM and 
“nrounds” for XGB). To allow the user to change this 
range of main tuning parameters, we implemented as 
argument (i.e. “tuning” argument) the maximal value of 
the main parameter to consider for the model tuning (i.e. 
default 10). More precisely, ten incremental tenth of the 
maximal value of the main parameter will be considered 
for the model tuning. Concerning the ERT model [34], 
this “expand.grid” function implied also the extratrees 
splitting rule (i.e. “splitrule” argument) and 1 minimal 
node size for classification (i.e. “min.node.size” argu-
ment). Concerning the SGB model [37], this “expand.
grid” function implied also 20 gradient boosting itera-
tions (i.e. “n.trees” argument), a learning rate of 0.01 (i.e. 
“shrinkage” argument) and 3 observations in each termi-
nal node (i.e. “n.minobsinnode” argument). Concerning 
the XGB model [32], this “expand.grid” function implied 
also 0.3 learning rate (i.e. “eta” argument), 6 depth of the 
tree (i.e. “max_depth” argument), 0 regularization pre-
venting overfitting (i.e. “gamma” argument), 1 observa-
tion supplied to a tree (i.e. “subsample” argument), 1 

minimal instance required in a child node (i.e. “min_
child_weight” argument) and 1 variable supplied to a tree 
(i.e. “colsample_bytree” argument).

Performance metrics
The developed ML workflow estimated global accu-
racy from the training and testing datasets based on the 
holdout method [45] combined with the repeated k-fold 
cross-validation method [46]. The accuracy and confi-
dence intervals (95% CI), as well as Cohen’s kappa statis-
tic [59] were estimated based on the “confusionMatrix” 
function of the caret R library (version 6.0–94) [27]. The 
“confusionMatrix” function of the caret R library (ver-
sion 6.0–94) [27] was also used to calculate phenotype 
class-dependent performance metrics such like sensitiv-
ity, specificity, precision, recall and others. In addition 
to the accuracy estimation, other global performance 
metrics were implemented into the developed ML work-
flow. From the ML model training outcomes, the “evalm” 
function of the MLeval R (version 0.3) library was used in 
order to estimate performance metrics, such as F1-score 
[60], CC [68], as well as AUC [61] from ROC [62], PR 
[63], and PRG [65].

Output files
The names of output files are controlled by a prefix argu-
ment (i.e. “prefix” argument). Depending of the goal 
selected by the user (i.e. “goal” argument), the output 
files include (Fig.  1): predictors selected by the model 
(i.e. predictors.tsv), model fitting metrics through param-
eters (i.e. tuning_parameters.tsv) and resampling (i.e. 
resampling.tsv), performance curves (i.e. ROC, CC, PR, 
PRG: curves.pdf ) and performance metrics (i.e. accu-
racy, Cohen’s kappa, F1score, ROC-AUC, PR-AUC, PR-
AUC and others: performance.tsv), confusion matrix 
(i.e. confusion_matrix.tsv), overall accuracy (i.e. accu-
racy_overall.tsv), accuracy per phenotype of interest (i.e. 
accuracy_classes.tsv), prediction (i.e. prediction.tsv), and 
workflow summary (i.e. summary_workflow.txt). In order 
to reuse the same dataset splitting for new run, the out-
put files includes also an input phenotype summary (i.e. 
summary_input_phenotypes.tsv). Finally, an external 
representation of R objects (i.e. saved_data.RData) and 
a short-cut of the current workspace (i.e. saved_images.
RData) can be produced for downstream developments 
(i.e. “backup” argument, default FALSE).

Phylogenomic tree, statistical analyses and graphical 
representations
As recently proposed, the phylogenomic tree was 
inferred from hamming distances [139] derived from 
cgMLST profiles [122]. Additional available Rscripts 
were developed to perform non-parametric tests, 
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graphical representations and ANOVA of the present 
study (i.e. boxplots.R, heatmappe.R and ANOVA.R). 
Mapping and assembly metrics (Additional files 3 and 
4) were displayed and compared based on the ggplot2 
(version 3.4.1) [140], dplyr (version 1.1.0), ape (version 
5.7.1), ggprism (version 1.0.4), reshape2 (version 1.4.4) 
and stats (version 3.6.2) [133] R libraries, while ML 
performance metrics (Fig. 2 and Additional file 7) were 
displayed based one ggplot2 (version 3.4.1) [140], plyr 
(version 1.8.8), ggpmisc (version 0.5.2), reshape2 (ver-
sion 1.4.4) and lubridate (version 1.9.2) [141] R libraries. 
The Pearson’s Chi-squared test with Yates’ continuity 
correction and multiple Chi-squared tests with Bonfer-
roni correction were performed based on the stats (ver-
sion 4.3.1) [133] and pacman (version 0.5.1) R libraries, 
respectively. Concerning the ANOVA assessing the 
impacts of unstandardized ML settings on accuracy, the 
dataframes were managed with the R library dplyr (ver-
sion 1.1.0), the homogeneity of variances was confirmed 
with Levene’s tests from the car R library (version 3.1.2) 
for the variables splitting (p = 0.121) and preprocess-
ing (p = 0.826), and the Normal distribution of ANOVA 
residues was confirmed with Shapiro–Wilk tests from 
the stats R library (version 3.6.2) [133] for all genomic 
profiles together (p = 0.196) and each of them indepen-
dently (0.045 < p < 0.588). Multi-way ANOVA was per-
formed with the “aov” function of the ggpubr R library 
(version 0.6.0) assuming homogeneity of variances and 
Normal distribution of ANOVA residues, while one-way 
ANOVA was performed with the “oneway.test” func-
tion of the stats R library (version 3.6.2) [133] assuming 
heterogeneity of variances and Normal distribution of 
ANOVA residues. Tukey multiple pairwise-comparisons 
of means were performed with the “TukeyHSD” func-
tion of stats R library (version 3.6.2) [133]. Concordant 
results between these multi-way and one-way ANOVA 
were provided in the present study.
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