Harnessing Microbial Genomics for Epidemiological Surveillance

City of Münster

Dag Harmsen

&

University of Münster, Germany

dharmsen@uni-muenster.de

Commercial Disclosure

Dag Harmsen is co-founder and partial owner of a bioinformatics company (Ridom GmbH, Münster, Germany) that develops software for DNA sequence analysis. Recently Ridom and Ion Torrent/Thermo Fisher (Waltham, MA) partnered and released SeqSphere⁺ software to speed and simplify whole genome based bacterial typing.

Fourth Dimension Needed for More Specific Surveillance

Place, Time, 'Person' ... Type!

It's the Consensus Genome-wide Gene by Gene *de novo* Consensus Accuracy

Jünemann et al. (2013). Nature Biotechnology 31: 294 [PubMed].

Current NGS Bottlenecks

NuGen Mondrian PE N

PE NGS Express

Goal: Develop algorithms that scale to arbitrarily large datasets

Design requirements:

- 1. Must handle data streams
- 2. Compute cost to add new genome must be ~ O(1)

'n+1' problem

Examples:

- 1. Multiple sequence alignment via profile-HMM
- 2. Phylogenetic placement on reference tree
- 3. Bloom filters

Emerging challenge:

Deleting all the redundant data

n, number of isolates in database

Aaron Darling – University of Technology Sydney

Surveillance & Phylogeny

'Molecular Typing Esperanto' by Standardized Genome Comparison

SNP, single nucleotide polymorphism; cgMLST, core genome multi locus sequence typing; n, number of isolates in database.

Rapid , Ad hoc' NGS - E. coli O104:H4 Outbreak

(Germany May/June, 2011)

Phylogenetic Analysis of EHEC 0104:H4

Method

- By 'quick and dirty' hybrid reference mapping & *de novo* assemblies of WGS data & BIGSdb* core genome MLST (cgMLST/MLST+)
- n = 1.144 core genome genes and minimum-spanning tree

Results

- Strain LB226692 (outbreak 2011) and strain 01-09591 (2001 German isolate causing historic HUS outbreak) belong to the HUSEC041 complex
- Both strains are only distantly related to commonly isolated EHEC serotypes

FACULTY#100

*Jolley & Maiden (2010). BMC Bioinformatics. 11: 595 [PubMed],

GABenchToB: A Genome Assembly Benchmark Tuned on Bacteria and Benchtop Sequencers

Based on the elapsed wall clock time (A, in hours) and the total CPU utilization (B, in percent and relative to the 48 available CPU cores of the executing compute host). With regard to the CPU utilization, all assemblies have been instructed via proper parameterization to make maximal use of the 48 available CPU cores. The only exceptions to this were SEQMAN, which does not support parallelization, and CELERA, which due to configuration constraints has altering concurrency and multithreading parameters for different internal processes. For DBG assemblers only run time and CPU utilization of the single assemblies with the best performing k-mer parameter are shown and not the summation of the full k-mer optimization procedure (for SPADES and CLC this is equivalent).

Detailed analysis of the effects of different **coverage** and of different kmer szes [for de Bruijn graph assemblers only]!

Jünemann et al. (2014). PLoS One 9: e107014 [PubMed].

Read and assembly metrics inconsequential for clinical utility of whole-genome sequencing in mapping outbreaks

To the Editor:

In their paper "Performance comparison of benchtop high-throughput sequencing platforms" published in the May 2012 issue, Loman *et al.*¹ provide a detailed comparison of the metrics associated with three different benchtop DNA sequencing platforms for the assembly of a single genome. Information was given on read-level metrics, such as length, accuracy and alignment, and on assembly-level metrics, such as contig N50 and gap number. The results were discussed in the context of the utility of whole-genome sequencing for public health microbiology.

We believe, however, that one of the primary uses for sequencing in clinical microbiology (at least initially) will be in the detection of pathogen transmission

VOLUME 31 NUMBER 7 JULY 2013 NATURE BIOTECHNOLOGY

Mapping & SNP Calling

- MRSA outbreak on a special care baby unit in 6 month period, 2011 UK - Harris et al. (2013). Lancet Infect Dis. 13: 130 [PubMed]
- 15 outbreak (**ST 2371**) and 9 control isolates resequenced on Illumina HiSeq & MiSeq and Ion Torrent PGM [*gave nearly identical SNP lists*]
- reads were mapped against the chromosome of an EMRSA-15 reference (HO 50960412; accession number HE681097; ST 22, i.e. SLV of ST 2371) and discriminatory single nucleotide polymorphisms (SNPs) were identified in the shared core genome of all 24 isolates (majority base needed to be present in at least 75% of reads on each strand → consensus)
- all platforms clearly discriminated outbreak from the 9 non-outbreak isolates (with an average of 13,154 SNP differences between both groups for MiSeq and 13,297 SNPs for PGM)
- all platforms identified a total of 23 SNPs among the 15 outbreak isolates
- no strong temporal signature of sequential patient transmission (due to repeated transmission of staff member *or slow mutation rate and short outbreaks?*)

Harris et al. (2013). Nature Biotechnology 31: 592 [PubMed].

Mapping & SNP Calling II

- high-resolution view of the epidemiology and microevolution of a dominant lineage (ST 239) of methicillin-resistant Staphylococcus aureus (MRSA)
- reads were mapped for each isolate against TW20 reference (ST 239) and discriminatory single nucleotide polymorphisms (SNPs) were identified in the shared core genome
- reveals the global geographic structure within the lineage, its intercontinental transmission through four decades, and the potential to trace person-to-person transmission within a hospital environment
- Both studies are not instantly comparable due to different reference genomes used!

Tools for Surveillance & Phylogeny

		anous.							
Solution	Date of Publication/ First Release	Upload/Analyse Raw Sequence Data	Reference-Based Mapping	<i>de novo</i> Assembly	Variant Calling	Typing analyses (e.g., MLST)	Comparative Typing Analyses	Multiple Sequence Alignment	Phylogenetic Tree/Network Construction
			Generic NGS An	alysis Soluti	ons:				
ioNumerics ^a (\$)	1992	Yes	Yes	Yes	Yes	No ^c	Yes	Yes	Yes
LC Genomics workoench ^a	2008	Yes	Yes	Yes	Yes	No	No	Yes	Yes
Galaxy ^b	2007	Yes	Yes	Yes	Yes	No	No	Yes	Yes
		S	pecific Bacterial NG	S Analysis S	olutions:				
IGSdb	2010	No	No	No	Yes	Yes	Yes	Yes	Yes
Center for Genomic	2011	¥7	N	V	V	V	V	Nr. d	N.
pidemiology Web Port ¹	2011	Yes	NO	Yes	res	r es	r es	N0 °	Yes
idom SeqSphere+ a 🚯	2013	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
np-search	2013	No	No	No	No	No	Yes	No ^e	Yes

Wyres *et al.* (2014). WGS analysis and interpretation in clinical and public health microbiology laboratories: what are the Requirements and how do existing tools compare? *Pathogens* **3:** 437 [doi:10.3390/pathogens3020437].

3rd vs. 2nd Generation Sequencing

Table 2 Accuracy of assembled contigs with respect to the reference genome						rRNA operons	
Mismatches	GS Jr	lon PGM	MiSeq	PacBio	PacBio (>1 M bp)	8	BMC
Number of contigs	309	61	34	31	2	and a set	Genomics
Number of mismatches	133	108	230	389	157	the state of the s	
Number of indels	824	2853	184	715	698	scien	Open Access
ndels length	977	3018	241	818	794	13 Ces	
Number of mismatches per 100 kbp	2.6	2.1	4.5	7.5	3.0	913 2 RS	d- and
Number of indels per 100 kbp	16.3	56.2	3.6	13.8	13.5	3 3 YS 10 From	
Number of nisassemblies	0	0	1	13	10	3	a bacterial
Number of relocations	0	0	1	11	10		
Number of translocations	0	0	0	1	0		
Number of inversions	0	0	0	1	0		shi Yoshitake ⁴ , Naohisa Goto ² ,
Number of nisassembled contigs	0	0	1	5	2	1000	asahara ³ and Shota Nakamura ^{2*}
Genome coverage (%)	97.844	98.290	98.499	99.999	99.848		
Duplication ratio	1.004	1.000	1.003	1.032	1.007	1 may	
Generated contigs were con v2.3 [23]. The number of ind in the aligned bases. The nu are classified as misassembli which the left and right flan chromosome on the referen An inversion is a misassemb	npared wi lels is the mber of r es. A relo king sequ ce but an ly in which	ith the re total nur relocation cation is uences bo e either >	ference g mber of in s, inversion defined a oth align t h ab apart t and righ	enome usi insertions a cons, and tr s a misass to the sam rt or overla it flanking	ing QUAST nd deletions anslocations embly in e ap by >1 kb. sequences	Hard and a state of the state o	 3rd generation sequencer improvement better de novo assemblies more complete genomes

both align to the same chromosome but on opposite strands. A translocation

is a misassembly in which the flanking sequences align on different chromosomes. Genome coverage is the percentage of bases aligned to the

reference genome.

De novo Assembly and SNP Calling

BIOINFORMATICS APPLICATIONS NOTE

Vol. 29 no. 2 2013, pages 275–276 doi:10.1093/bioinformatics/bts673

Genetics and population analysis

Advance Access publication November 19, 2012

High-throughput microbial population genomics using the Cortex variation assembler

Zamin Iqbal^{1,*}, Isaac Turner² and Gil McVean^{1,2,*}

¹Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK and ²Department of Statistics, South Parks Road, Oxford, OX1 3TG, UK

Associate Editor: Jeffrey Barrett

Abstract

SUMMARY: We have developed a software package, Cortex, designed for the analysis of genetic variation by *de novo* assembly of multiple samples. This allows direct comparison of samples without using a reference genome as intermediate and incorporates discovery and genotyping of single-nucleotide polymorphisms, indels and larger events in a single framework. We introduce pipelines which simplify the analysis of microbial samples and increase discovery power; these also enable the construction of a graph of known sequence and variation in a species, against which new samples can be compared rapidly [*Cortex memory-use scales linearly with number of kmers and samples*]. We demonstrate the ease-of-use and power by reproducing the results of studies using both long and short reads.

AVAILABILITY: http://cortexassembler.sourceforge.net (GPLv3 license).

CONTACT: zam@well.ox.ac.uk, mcvean@well.ox.ac.uk

Iqbal et al. (2013). Bioinformatics 29: 275 [PubMed].

Standardized Hierarchical Microbial Typing

SNPs*/ Alleles

Discriminatory Power

MLST+ core genome MLST (cgMLST)

rMLST

SNPs confirmatory/canonical

MLST

Hierarchical microbial typing approach. From bottom to top with increasing discriminatory power. MLST, multi locus sequence typing; rMLST, ribosomal MLST; SNP, single nucleotide polymorphism; cgMLST, core genome MLST.

Outbreak / Lineage specific

e.g., **Köser** *et al* (2012). *NEJM* **366:** 2267 [PubMed] *from *de novo* assembled and/or mapped genomes

Standardized

Species specific

STEC: Mellmann et al. (2011). PLoS One. 6: e22751 [PubMed]

N. meng.: Vogel et al. (2012). JCM 50: 1889 [PubMed]

N. meng.: Jolley et al. (2012). JCM. 50: 3046 [PubMed]

C. jejuni: Cody et al. (2013). JCM. 51: 2526 [PubMed]

Listeria: *CIM* 2014 [PubMed]; *S. aureus*: *JCM* 2014 [PubMed]; *MtbC*: *JCM* 2014 [PubMed]

Pan-bacterial specific (also suited for speciation) Jolley *et al.* (2012). *Microbiology* **158**: 1005 [PubMed]

Species specific e.g., Van Ert et al. (2007). JCM 45: 47 [PubMed]

Maiden *et al.* (1998). *PNAS* **95:** 3140 [PubMed] also needed for backward compatibility

For hierarchical microbial typing see also: Maiden et al. (2013). Nature Rev. Microbiol. 11: 728 [PubMed].

Outlook

http://patho-ngen-trace.eu/

From WGS Geno- to Phenotype

Staphylococcus aureus species identification, spa type, antibiotic susceptibility profile and presence of toxins can be rapidly determined by query of the WGS data. Colored squares represent genes potentially present on the chromosome and/or plasmids. The presence of genes in our cluster isolates are indicated by color: antibiotic resistance genes are shown in red, green for the toxin gene, blue for the catalase-encoding katA, yellow for the spa gene and gray indicates genes that were queried but not found.

Leopold et al. (2014). JCM 52: 2365 [PubMed].

Predictive Models: Early Warning, Outbreak Spread, Outbreak Source location & Outbreak Reconstruction

EWS; early warning system.

Brockmann et al. (2013). Science 342: 1337 [PubMed].

Harnessing Microbial Genomics for Epidemiological Surveillance

City of Münster

Dag Harmsen

&

University of Münster, Germany

dharmsen@uni-muenster.de

