# Future lessons from large-scale biological data management

Paul Flicek Vertebrate Genomics, European Bioinformatics Institute European Molecular Biology Laboratory Wellcome Trust Sanger Institute



#### We have been living through a revolution.



#### Revolution is driven by data



Source: Semantic community

EMBL

### A data driven experiment: The 1000 Genomes Project primary goals

To provide a deep characterization of human genome variation to provide a baseline for investigating the relationship between genotype and phenotype.

- To identify effectively all variation
  - At 1% MAF or higher genome wide
  - At 0.1% to 0.5% MAF in the exonic regions
- Structural variation as well as SNVs
- Provide a haplotype structure for the human genome
- Develop analysis methods, tools and reagents which can be transferred to other projects



#### Which samples?





#### Basic strategy

- Collect shotgun sequencing reads
- Random Fragments of the whole genome or exome
- Map the reads to the reference genome
  - Possible problems with repetitive regions of the genome
  - Possible problems with misalignments
- Detect variation based on the alignment of the reads from all samples
  - Statistical issues allowing for errors in sampling

Seven years ago little of this could be done at scale



### The growth of the project

- Pilot (2008-2010, published Nature Oct. 2010):
  - Deep sequence for two trios (CEU and YRI)
  - Low coverage ( $\sim 2x$ ) of 180 individuals in 3 populations
  - Capture of 1000 genes in ~700 individuals
- Phase 1 (2010-2012, published Nature Nov. 2012)
  - 1092 individuals with ~3x low-coverage, 1040 with matched exome sequence
  - OMNI 2.5M genotyping
- Phase 2+3 (2012-2014, publish final Paper TBD)
  - 2535 samples with low coverage and exome sequence data
  - High coverage Complete Genomics data for 427 samples.
- Final project represents 25 times more data than the original plan. With 2.5 times more samples and more populations





#### Managing the 1000 Genomes data

#### What it felt like in April 2008



#### First major data transfer







#### Infrastructures are critical...





# But we only notice them when they go wrong





Informatics is Infrastructure:

Network transfer protocols Data Compression Standards Archives



### 1000 Genomes Project Size

- There are 4461406 files on the ftp site
- There are **580T** of data on the ftp site
- There are **26** populations
- There are **2854** samples
- There are 79072 gigabases of low coverage sequence
- 28753 x coverage in low coverage
- There are **35607** gigabases of exome sequence

There are currently 1,196,200 GB of sequence in the ENA in total (was 235 GB at the start of the project).







#### Distributed production: sequence data submission



Unique monthly SRA submission July-2008 - May-2013



#### Distributed consumption: sequence data access





#### In how many ways can you say "female"?

| 18-day pregnant females | female (lactating)                    | individual female           | worker caste (female)       |  |  |  |  |
|-------------------------|---------------------------------------|-----------------------------|-----------------------------|--|--|--|--|
| 2 yr old female         | female (pregnant)                     | lgb*cc females              | sex: female                 |  |  |  |  |
| 400 yr. old female      | female (outbred)                      | mare                        | female, other               |  |  |  |  |
| adult female            | female parent                         | female (worker)             | female child                |  |  |  |  |
| asexual female          | female plant                          | monosex female              | femal                       |  |  |  |  |
| castrate female         | female with eggs                      | ovigerous female            | 3 female                    |  |  |  |  |
| cf.female               | female worker                         | oviparous sexual females    | female (phenotype)          |  |  |  |  |
| cystocarpic female      | female, 6-8 weeks old                 | worker bee                  | female mice                 |  |  |  |  |
| dikaryon                | female, virgin                        | female enriched             | female, spayed              |  |  |  |  |
| dioecious female        | female, worker                        | pseudohermaprhoditic female | femlale                     |  |  |  |  |
| diploid female          | female(gynoecious)                    | remale                      | metafemale                  |  |  |  |  |
| f                       | femele                                | semi-engorged female        | sterile female              |  |  |  |  |
| famale                  | female, pooled                        | sexual oviparous female     | normal female               |  |  |  |  |
| femail                  | femalen                               | sterile female worker       | sf                          |  |  |  |  |
| female                  | females                               | strictly female             | vitellogenic replete female |  |  |  |  |
| female - worker         | females only                          | tetraploid female           | worker                      |  |  |  |  |
| female (alate sexual)   | gynoecious                            | thelytoky                   | hexaploid female            |  |  |  |  |
| female (calf)           | healthy female                        | female (gynoecious)         | female (f-o)                |  |  |  |  |
| hen                     | probably female (based on morphology) |                             |                             |  |  |  |  |

female (note: this sample was originally provided as a \"male\" sample to us and therefore labeled this way in the brawand et al. paper and original geo submission; however, detailed data analyses carried out in the meantime clearly show that this sample stems from a female individual)",



#### Big problems need solutions



Graphic: Matt Pike Source: News Limited



#### Solutions are often possible

Costa Concordia, September 2013



Salvage operation



a pulling machine slowly rolls the

the caissons.

ship upright helped by the weight of

Underwater platforms built to support the ship. Metal boxes (caissons) attached to the side and filled with water.

Source: Titan/Micoperi. Image: Getty



More caissons fixed to the other side of the hull. Water then pumped out.





Informatics is Infrastructure:

Network transfer Data Compression Standards Archives



# Standards-compliant data are more discoverable

| ampling and collection |     |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
|------------------------|-----|--------------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------|-----------------|-------------------------------|-----------------------|------------------------|-------------------|-----------|---|
| Specimen voucher       | =   |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
| Bio material           |     |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
| Culture collection     |     |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
|                        | = • |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
| Isolation source       |     | saline water                                     |                                              |                                                                          |                 |                               |                       |                        |                   | ٢         | 0 |
| Host                   | =   |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
| Collection date        | =   | 21-12-2012                                       |                                              | "                                                                        |                 | 201                           | 2 De                  | ec                     | ,                 | •         |   |
|                        |     |                                                  |                                              | м                                                                        | т               | W                             | т                     | F                      | s s               | 3         |   |
|                        |     |                                                  |                                              | 26                                                                       | 27              | 28                            | 29                    | 30                     | 1 2               | 2         |   |
|                        |     |                                                  |                                              | 3                                                                        | 4               | 5                             | 6                     | 7                      | 8 9               |           |   |
|                        |     |                                                  |                                              | 10                                                                       | 11              | 12                            | 13                    | 14 1                   | 5 1               | 6         |   |
|                        |     |                                                  |                                              | 17                                                                       | 18              | 19                            | 20                    | 21 3                   | 2 2               | 3         |   |
|                        |     |                                                  |                                              | 24                                                                       | 25              | 26                            | 27                    | 20 4                   | 0 2               | 0         |   |
|                        |     |                                                  |                                              | 31                                                                       | 1               | 2                             | 3                     | 4                      | 5 6               | 3 9       |   |
| Collected by           |     |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
|                        |     |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
| Identified by          | =   |                                                  |                                              |                                                                          |                 |                               |                       |                        |                   |           |   |
| Country                | =   | United Kingdom                                   |                                              |                                                                          |                 |                               |                       |                        |                   | ٢         | ٢ |
| Geographical location  | = * | Search by: 💽 Bound                               | ed box 🔿 Radius (                            | km)                                                                      |                 |                               |                       |                        |                   |           |   |
|                        |     | • •                                              |                                              | Nor                                                                      | way             |                               | M                     | lap<br>Baltic          | Satell<br>Sea     | Fi<br>Est |   |
|                        |     |                                                  | No. h Sea                                    |                                                                          |                 | 19.90                         |                       |                        |                   |           |   |
|                        |     | -                                                | Noh Sea<br>United<br>Kingdom                 | De                                                                       | nmark           |                               |                       |                        | Lit               | huan      |   |
|                        |     |                                                  | Noh Sea<br>United<br>Kingdom                 | De                                                                       | nmark           |                               |                       |                        | Lit               | huan      |   |
|                        |     | Ireland                                          | No.th Sea<br>United<br>Kingdom               | De<br>Netherlands                                                        | nmark           | - <sup>7</sup>                |                       | Polan                  | Lit               | huan      |   |
|                        |     | Ireland                                          | No.th Sea<br>United<br>Kingdom               | De<br>Netherlands<br>Belgium Ge                                          | nmark<br>rman   | y                             |                       | Polan                  | Lit               | huan      |   |
|                        |     | Ireland                                          | Noh See<br>United<br>Kingdom                 | De<br>Netherlands<br>Belgium Ge                                          | nmark<br>rman   | y<br>Czer                     | ch Re                 | Polan<br>P Sio         | Lit<br>d          | huan      |   |
|                        |     | Ireland                                          | Voh See                                      | De<br>Netherlands<br>Selgium Ge                                          | nmark<br>rman   | y<br>Czec                     | ch Re                 | Polan<br>P Slo         | Lit<br>d<br>vakia | huan      |   |
|                        |     | Google                                           | Noh See<br>United<br>Kingdom<br>B<br>Mojitan | Netherlands<br>Selgium Ge                                                | rman            | y<br>Czes<br>Austr            | ch Re<br>ria<br>DRIOI | Polan<br>P Slo         | Lit<br>d<br>vakia | huan      |   |
|                        |     | Ireland<br>Google<br>Southwest point<br>Latitude | Nouth See                                    | De<br>Netherlands<br>Selgium Ge<br>DE2013 Bassis<br>Northeas<br>Latitude | rman<br>off. Go | y<br>Czec<br>Austr<br>ogle, C | ch Re<br>ria<br>DRIOI | Polan<br>P Slo<br>Hump | Lit<br>d<br>vakia | huan      |   |

search terms specified for fields 'isolation source', 'collection date' and 'geographical location'





- 160 marine stations ran simultaneous standardised sampling on the 21<sup>st</sup> of June 2014
- A snapshot into status of world's oceans and seas generating a reference dataset that will provide insight into marine microbial diversity and function in the marine environment
- Cross-discipline geographically informed contextual data reporting





#### Reporting standards for OSD







### Informatics is Infrastructure:

# The Future



## The Future

- Infrastructure and standards allow for us to imagine and realise bigger projects in the future
- A connected web of domain specific efforts, general projects, technology and innovation will drive this infrastructure
  - The Global Alliance for Genomics and Health
  - ELIXIR
  - Secure cloud-based computing
  - Software









- Technology, standards and protocols for federated sharing and analysis of human genomic and health data
- Applicable to many problem is data management





#### **Building capacity in Europe**

- ELIXIR: a sustainable infrastructure for biological information in Europe.
- Supporting life science research and its translation to:
  - medicine
  - agriculture
  - the environment
  - the bioindustries
  - society.
- Supported by UK LFCF





#### EMBL-EBI Embassy Cloud





#### Infrastructure enables discovery



# Necessary (if conceptually unexciting) data management

# Interesting, ground breaking ideas





### Acknowledgements

## People

- Guy Cochrane and the ENA Team
- Laura Clarke and the 1000 Genomes Project
- Andy Cafferkey and EBI's Cloud Team
- Justin Paschall and the EBI Variation Archive Team
- Fiona Cunningham and the entire Ensembl Team



Framework Programme 7





